Optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Extensions on Tube Domains and a Simple Proof of Prékopa’s Theorem

被引:0
作者
Takahiro Inayama
机构
[1] Tokyo University of Science,Department of Mathematics, Faculty of Science and Technology
关键词
Prékopa’s theorem; -extension; Convexity; Minimal extension property; 32U05; 52A39;
D O I
10.1007/s12220-021-00796-w
中图分类号
学科分类号
摘要
We prove the optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-extension theorem of Ohsawa–Takegoshi type on a tube domain. As an application, we give a simple proof of Prékopa’s theorem.
引用
收藏
相关论文
共 50 条
[41]   Locally convex hypersurfaces immersed in Hn×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^n\times \mathbb {R}$$\end{document} [J].
Inês S. de Oliveira Padilha ;
S. J. Paul A. Schweitzer .
Geometriae Dedicata, 2017, 188 (1) :17-32
[42]   Power-Aggregation of Pseudometrics and the McShane-Whitney Extension Theorem for Lipschitz p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-Concave Maps [J].
J. Rodríguez-López ;
E. A. Sánchez-Pérez .
Acta Applicandae Mathematicae, 2020, 170 (1) :611-629
[43]   The Convexity of Entire Spacelike Hypersurfaces with Constant σn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{n-1}$$\end{document} Curvature in Minkowski Space [J].
Changyu Ren ;
Zhizhang Wang ;
Ling Xiao .
The Journal of Geometric Analysis, 2024, 34 (6)
[44]   Extension of quasi-Ho¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {o}}$$\end{document}lder embeddings between unit spheres of p-normed spaces [J].
Rui Liu ;
Jifu Yin .
Annals of Functional Analysis, 2023, 14 (2)
[47]   Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1≤p≤q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p \le q$$\end{document} [J].
O. Delgado ;
E. A. Sánchez Pérez .
Positivity, 2016, 20 (4) :999-1014
[48]   Duality for nondifferentiable minimax fractional programming problem involving higher order (C,α,ρ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})$$\end{document}-convexity [J].
Anurag Jayswal ;
Vivek Singh ;
Krishna Kummari .
OPSEARCH, 2017, 54 (3) :598-617
[49]   Fields Q(i,2,p1,…,pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}(i, \sqrt{2},\sqrt{p_1},\ldots ,\sqrt{p_n})$$\end{document} with cyclic 2-class group [J].
S. Essahel ;
A. Mouhib .
Acta Mathematica Hungarica, 2023, 170 (2) :499-509
[50]   On units of real triquadratic fields and the second 2-class group of certain cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-extensionsOn units of real triquadratic fields...I. Jerrari et al. [J].
Idriss Jerrari ;
Abdellah Sbai ;
Abdelmalek Azizi .
The Ramanujan Journal, 2025, 67 (2)