共 50 条
[41]
Locally convex hypersurfaces immersed in Hn×R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {H}^n\times \mathbb {R}$$\end{document}
[J].
Geometriae Dedicata,
2017, 188 (1)
:17-32
[42]
Power-Aggregation of Pseudometrics and the McShane-Whitney Extension Theorem for Lipschitz p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p$\end{document}-Concave Maps
[J].
Acta Applicandae Mathematicae,
2020, 170 (1)
:611-629
[43]
The Convexity of Entire Spacelike Hypersurfaces with Constant σn-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma _{n-1}$$\end{document} Curvature in Minkowski Space
[J].
The Journal of Geometric Analysis,
2024, 34 (6)
[44]
Extension of quasi-Ho¨\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ddot{\text {o}}$$\end{document}lder embeddings between unit spheres of p-normed spaces
[J].
Annals of Functional Analysis,
2023, 14 (2)
[45]
Picard Theorem for Holomorphic Curves from a Punctured Disc into Pn(C)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^n({\mathbb {C}})$$\end{document} with Few Hypersurfaces in Subgeneral Position
[J].
Bulletin of the Iranian Mathematical Society,
2021, 47 (6)
:1989-2004
[46]
Convexity of 2-Convex Translating Solitons to the Mean Curvature Flow in Rn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pmb {\varvec{{\mathbb {R}}}}^{n+1}$$\end{document}
[J].
The Journal of Geometric Analysis,
2021, 31 (4)
:4074-4091
[47]
Strong extensions for q-summing operators acting in p-convex Banach function spaces for 1≤p≤q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \le p \le q$$\end{document}
[J].
Positivity,
2016, 20 (4)
:999-1014
[48]
Duality for nondifferentiable minimax fractional programming problem involving higher order (C,α,ρ,d)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})$$\end{document}-convexity
[J].
OPSEARCH,
2017, 54 (3)
:598-617
[49]
Fields Q(i,2,p1,…,pn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{Q}(i, \sqrt{2},\sqrt{p_1},\ldots ,\sqrt{p_n})$$\end{document} with cyclic 2-class group
[J].
Acta Mathematica Hungarica,
2023, 170 (2)
:499-509
[50]
On units of real triquadratic fields and the second 2-class group of certain cyclotomic Z2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Z}_2$$\end{document}-extensionsOn units of real triquadratic fields...I. Jerrari et al.
[J].
The Ramanujan Journal,
2025, 67 (2)