共 50 条
[31]
Some fractional integral inequalities involving m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{m}$$\end{document}-convex functions
[J].
Aequationes mathematicae,
2017, 91 (3)
:479-490
[32]
Convexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}-characteristic function formConvexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}...D. Hou et al.
[J].
Theory and Decision,
2025, 98 (4)
:519-536
[33]
Radii of α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{\alpha }$$\end{document}-Convexity of Some Normalized Bessel Functions of the First Kind
[J].
Results in Mathematics,
2017, 72 (4)
:2023-2035
[34]
On nonlinear convolution-type integral equations in the theory of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-adic strings
[J].
Theoretical and Mathematical Physics,
2023, 216 (1)
:1068-1081
[35]
On fine Mordell–Weil groups over Zp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Z}_{p}$$\end{document}-extensions of an imaginary quadratic field
[J].
Annales mathématiques du Québec,
2025, 49 (1)
:253-278
[36]
p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( p,q\right) $$\end{document}-Hermite–Hadamard inequalities and p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( p,q\right) $$\end{document}-estimates for midpoint type inequalities via convex and quasi-convex functions
[J].
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
2018, 112 (4)
:969-992
[37]
An Exact l1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$l_1$$\end{document} Penalty Approach for Interval-Valued Programming Problem
[J].
Journal of the Operations Research Society of China,
2016, 4 (4)
:461-481
[38]
Extensions of a near-group category of type (Z2,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathbb{Z}_2,1)$$\end{document}
[J].
Acta Mathematica Hungarica,
2022, 167 (2)
:404-418
[39]
Approximately two-dimensional harmonic (p1,h1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(p_{1},h_{1})$\end{document}-(p2,h2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(p_{2},h_{2})$\end{document}-convex functions and related integral inequalities
[J].
Journal of Inequalities and Applications,
2020 (1)
[40]
Vector optimization over cones involving support functions using generalized (Φ,ρ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\Phi ,\rho )$$\end{document}-convexity
[J].
OPSEARCH,
2017, 54 (2)
:351-364