Optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Extensions on Tube Domains and a Simple Proof of Prékopa’s Theorem

被引:0
作者
Takahiro Inayama
机构
[1] Tokyo University of Science,Department of Mathematics, Faculty of Science and Technology
关键词
Prékopa’s theorem; -extension; Convexity; Minimal extension property; 32U05; 52A39;
D O I
10.1007/s12220-021-00796-w
中图分类号
学科分类号
摘要
We prove the optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-extension theorem of Ohsawa–Takegoshi type on a tube domain. As an application, we give a simple proof of Prékopa’s theorem.
引用
收藏
相关论文
共 50 条
[31]   Some fractional integral inequalities involving m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{m}$$\end{document}-convex functions [J].
Mohamed Jleli ;
Donal O’Regan ;
Bessem Samet .
Aequationes mathematicae, 2017, 91 (3) :479-490
[32]   Convexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-characteristic function formConvexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}...D. Hou et al. [J].
Dongshuang Hou ;
Aymeric Lardon ;
Theo Driessen .
Theory and Decision, 2025, 98 (4) :519-536
[33]   Radii of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-Convexity of Some Normalized Bessel Functions of the First Kind [J].
Murat Çağlar ;
Erhan Deniz ;
Róbert Szász .
Results in Mathematics, 2017, 72 (4) :2023-2035
[34]   On nonlinear convolution-type integral equations in the theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic strings [J].
A. Kh. Khachatryan ;
Kh. A. Khachatryan ;
H. S. Petrosyan .
Theoretical and Mathematical Physics, 2023, 216 (1) :1068-1081
[36]   p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p,q\right) $$\end{document}-Hermite–Hadamard inequalities and p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( p,q\right) $$\end{document}-estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Mehmet Kunt ;
İmdat İşcan ;
Necmettin Alp ;
Mehmet Zeki Sarıkaya .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 (4) :969-992
[37]   An Exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} Penalty Approach for Interval-Valued Programming Problem [J].
Anurag Jayswal ;
Jonaki Banerjee .
Journal of the Operations Research Society of China, 2016, 4 (4) :461-481
[39]   Approximately two-dimensional harmonic (p1,h1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{1},h_{1})$\end{document}-(p2,h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{2},h_{2})$\end{document}-convex functions and related integral inequalities [J].
Saad Ihsan Butt ;
Artion Kashuri ;
Muhammad Nadeem ;
Adnan Aslam ;
Wei Gao .
Journal of Inequalities and Applications, 2020 (1)