Optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-Extensions on Tube Domains and a Simple Proof of Prékopa’s Theorem

被引:0
作者
Takahiro Inayama
机构
[1] Tokyo University of Science,Department of Mathematics, Faculty of Science and Technology
关键词
Prékopa’s theorem; -extension; Convexity; Minimal extension property; 32U05; 52A39;
D O I
10.1007/s12220-021-00796-w
中图分类号
学科分类号
摘要
We prove the optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-extension theorem of Ohsawa–Takegoshi type on a tube domain. As an application, we give a simple proof of Prékopa’s theorem.
引用
收藏
相关论文
共 50 条
[23]   A non-type (D) operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document} [J].
Orestes Bueno ;
B. F. Svaiter .
Mathematical Programming, 2013, 139 (1-2) :81-88
[25]   Geometry of spaces of homogeneous trinomials on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} [J].
Pablo Jiménez-Rodríguez ;
Gustavo A. Muñoz-Fernández ;
Daniel L. Rodríguez-Vidanes .
Banach Journal of Mathematical Analysis, 2021, 15 (4)
[28]   Inequalities for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Norms that Sharpen the Triangle Inequality and Complement Hanner’s Inequality [J].
Eric A. Carlen ;
Rupert L. Frank ;
Paata Ivanisvili ;
Elliott H. Lieb .
The Journal of Geometric Analysis, 2021, 31 (4) :4051-4073
[29]   On the maximal unramified pro-2-extension of certain cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-extensions [J].
Abdelmalek Azizi ;
Mohammed Rezzougui ;
Abdelkader Zekhnini .
Periodica Mathematica Hungarica, 2021, 83 (1) :54-66