RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data

被引:0
|
作者
Balázs Győrffy
Zsombor Benke
András Lánczky
Bálint Balázs
Zoltán Szállási
József Timár
Reinhold Schäfer
机构
[1] Laboratory of Functional Genomics,Research Laboratory for Pediatrics and Nephrology
[2] Charité,2nd Department of Pathology
[3] Hungarian Academy of Sciences,undefined
[4] Pázmány Péter University,undefined
[5] Faculty of Informatic Technology,undefined
[6] Children’s Hospital Informatics Program,undefined
[7] Harvard Medical School,undefined
[8] Semmelweis University,undefined
来源
Breast Cancer Research and Treatment | 2012年 / 132卷
关键词
Survival analysis; Breast cancer; Prognosis; Bioinformatics; Microarray; Recurrence score; Recurrence risk; Lymph node status;
D O I
暂无
中图分类号
学科分类号
摘要
In the last decades, several gene expression-based predictors of clinical behavior were developed for breast cancer. A common feature of these is the use of multiple genes to predict hormone receptor status and the probability of tumor recurrence, survival or response to chemotherapy. We developed an online analysis tool to compute ER and HER2 status, Oncotype DX 21-gene recurrence score and an independent recurrence risk classification using gene expression data obtained by interrogation of Affymetrix microarray profiles. We implemented rigorous quality control algorithms to promptly exclude any biases related to sample processing, hybridization and scanning. After uploading the raw microarray data, the system performs the complete evaluation automatically and provides a report summarizing the results. The system is accessible online at http://www.recurrenceonline.com. We validated the system using data from 2,472 publicly available microarrays. The validation of the prediction of the 21-gene recurrence score was significant in lymph node negative patients (Cox-Mantel, P = 5.6E-16, HR = 0.4, CI = 0.32–0.5). A correct classification was obtained for 88.5% of ER- and 90.5% of ER + tumors (n = 1,894). The prediction of recurrence risk in all patients by using the mean of the independent six strongest genes (P < 1E-16, HR = 2.9, CI = 2.5–3.3), of the four strongest genes in lymph node negative ER positive patients (P < 1E-16, HR = 2.8, CI = 2.2–3.5) and of the three genes in lymph node positive patients (P = 3.2E-9, HR = 2.5, CI = 1.8–3.4) was highly significant. In summary, we integrated available knowledge in one platform to validate currently used predictors and to provide a global tool for the online determination of different prognostic parameters simultaneously using genome-wide microarrays.
引用
收藏
页码:1025 / 1034
页数:9
相关论文
共 50 条
  • [41] Hormone Receptor Status of Breast Cancer in the Himalayan Region of Northern India
    Kaul, Rashmi
    Sharma, Jaishree
    Minhas, Satinder S.
    Mardi, Kavita
    INDIAN JOURNAL OF SURGERY, 2011, 73 (01) : 9 - 12
  • [42] Hormone Receptor Status of Breast Cancer in the Himalayan Region of Northern India
    Rashmi Kaul
    Jaishree Sharma
    Satinder S. Minhas
    Kavita Mardi
    Indian Journal of Surgery, 2011, 73 : 9 - 12
  • [43] Clinical analysis of 21-gene recurrence score test in hormone receptor-positive early-stage breast cancer
    Zhu, Lizhe
    Ma, Nan
    Wang, Bin
    Zhou, Can
    Yan, Yu
    Wang, Ke
    He, Jianjun
    Ren, Yu
    ONCOLOGY LETTERS, 2019, 17 (06) : 5469 - 5480
  • [44] Hormone receptor and HER2 status in patients with breast cancer by races in southeastern Turkey
    Kuzhan, A.
    Adli, M.
    Alkis, H. Eryigit
    Caglayan, D.
    JOURNAL OF BUON, 2013, 18 (03): : 619 - 622
  • [45] Immunohistochemical analysis of the functional status of estrogen receptor cascade in breast cancer
    Kolar, Z
    Ehrmann, J
    Duskova, M
    NEOPLASMA, 1998, 45 (02) : 83 - 87
  • [46] Validation of a proxy for estrogen receptor status in breast cancer patients using dispensing data
    Srasuebkul, Preeyaporn
    Dobbins, Timothy A.
    Pearson, Sallie-Anne
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2014, 10 (02) : E63 - E68
  • [47] Cancer recurrence and mortality in women using hormone replacement therapy after breast cancer:: Meta-analysis
    Meurer, LN
    Lená, S
    JOURNAL OF FAMILY PRACTICE, 2002, 51 (12) : 1056 - 1062
  • [48] Identifying High-Risk Breast Cancer Patients Using Microarray and Clinical Data
    Ngisa, Anti Nasuha
    Fang, Ong Huey
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2040 - 2044
  • [49] Characterization of Hormone Receptor and HER2 Status in Breast Cancer Using Mass Spectrometry Imaging
    Goncalves, Juliana Pereira Lopes
    Bollwein, Christine
    Noske, Aurelia
    Jacob, Anne
    Jank, Paul
    Loibl, Sibylle
    Nekljudova, Valentina
    Fasching, Peter A. A.
    Karn, Thomas
    Marme, Frederik
    Mueller, Volkmar
    Schem, Christian
    Sinn, Bruno Valentin
    Stickeler, Elmar
    van Mackelenbergh, Marion
    Schmitt, Wolfgang D. D.
    Denkert, Carsten
    Weichert, Wilko
    Schwamborn, Kristina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [50] Efficacy of adjuvant chemotherapy according to hormone receptor status in young patients with breast cancer: a pooled analysis
    van der Hage, Jos A.
    Mieog, J. Sven D.
    de Vijver, Marc J. van
    de Velde, Cornelis J. H. van
    BREAST CANCER RESEARCH, 2007, 9 (05)