Hypercontractivity for Semigroups of Unital Qubit Channels

被引:0
|
作者
Christopher King
机构
[1] Northeastern University,Department of Mathematics
来源
Communications in Mathematical Physics | 2014年 / 328卷
关键词
Quantum Channel; Logarithmic Sobolev Inequality; Complete Positivity; Unitary Invariance; Noisy Quantum Channel;
D O I
暂无
中图分类号
学科分类号
摘要
Hypercontractivity is proved for products of qubit channels that belong to self-adjoint semigroups. The hypercontractive bound gives necessary and sufficient conditions for a product of the form e-t1H1⊗⋯⊗e-tnHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e^{-t_1 H_1}\otimes \cdots \otimes e^{- t_n H_n}}$$\end{document} to be a contraction from Lp to Lq, where Lp is the algebra of 2n-dimensional matrices equipped with the normalized Schatten norm, and each generator Hj is a self-adjoint positive semidefinite operator on the algebra of 2-dimensional matrices. As a particular case the result establishes the hypercontractive bound for a product of qubit depolarizing channels.
引用
收藏
页码:285 / 301
页数:16
相关论文
共 13 条
  • [1] HYPERCONTRACTIVITY OF HEAT SEMIGROUPS ON FREE QUANTUM GROUPS
    Franz, Uwe
    Hong, Guixiang
    Lemeux, Francois
    Ulrich, Michael
    Zhang, Haonan
    JOURNAL OF OPERATOR THEORY, 2017, 77 (01) : 61 - 76
  • [2] Volume of the space of qubit-qubit channels and state transformations under random quantum channels
    Lovas, Attila
    Andai, Attila
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (10)
  • [3] Optimal log-Sobolev inequality and hypercontractivity for positive semigroups on M2(C)
    Carbone, R
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (03) : 317 - 335
  • [4] A universal set of qubit quantum channels
    Braun, Daniel
    Giraud, Olivier
    Nechita, Ion
    Pellegrini, Clement
    Znidaric, Marko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (13)
  • [5] Unital Quantum Channels – Convex Structure and Revivals of Birkhoff’s Theorem
    Christian B. Mendl
    Michael M. Wolf
    Communications in Mathematical Physics, 2009, 289 : 1057 - 1086
  • [6] Absorption in Invariant Domains for Semigroups of Quantum Channels
    Raffaella Carbone
    Federico Girotti
    Annales Henri Poincaré, 2021, 22 : 2497 - 2530
  • [7] Absorption in Invariant Domains for Semigroups of Quantum Channels
    Carbone, Raffaella
    Girotti, Federico
    ANNALES HENRI POINCARE, 2021, 22 (08): : 2497 - 2530
  • [8] Estimation of two-qubit interactions through channels with environment assistance
    Rexiti, Milajiguli
    Mancini, Stefano
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (07)
  • [9] Evolutions of two-qubit entangled system in different noisy environments and channels
    Cao Lian-Zhen
    Liu Xia
    Zhao Jia-Qiang
    Yang Yang
    Li Ying-De
    Wang Xiao-Qin
    Lu Huai-Xin
    ACTA PHYSICA SINICA, 2016, 65 (03)
  • [10] Distribution and monogamy of quantum coherence for open three-qubit systems under local noisy channels
    Liao, Ming-Jie
    Zeng, Hao-Sheng
    LASER PHYSICS LETTERS, 2021, 18 (04)