Chain components with stably limit shadowing property are hyperbolic

被引:0
作者
Manseob Lee
Junmi Park
机构
[1] Mokwon University,Department of Mathematics
[2] Chungnam National University,Department of Mathematics
来源
Advances in Difference Equations | / 2014卷
关键词
hyperbolic; limit shadowing; shadowing; homoclinic class; chain component;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a diffeomorphism on a closed smooth manifold M. In this paper, we show that f has the C1-stably limit shadowing property on the chain component Cf(p) of f containing a hyperbolic periodic point p, if and only if Cf(p) is a hyperbolic basic set.
引用
收藏
相关论文
共 21 条
  • [1] Lee K(2010)Hyperbolicity of Discrete Contin. Dyn. Syst 27 1133-1145
  • [2] Lee M(2008)-stably expansive homoclinic classes Discrete Contin. Dyn. Syst 22 683-697
  • [3] Lee K(2008)-Stable shadowing diffeomorphisms Ergod. Theory Dyn. Syst 28 987-1029
  • [4] Moriyasu K(1994)-Stably shadowable chain components Osaka J. Math 31 373-386
  • [5] Sakai K(2006)Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds Discrete Contin. Dyn. Syst 14 465-481
  • [6] Sakai K(2009)On J. Differ. Equ 246 340-357
  • [7] Sakai K(2001)-persistently expansive homoclinic classes Math. Inequal. Appl 6 507-517
  • [8] Sambarino M(2007)-Stably shadowable chain components are hyperbolic J. Dyn. Differ. Equ 19 747-775
  • [9] Vieitez J(2014)Hyperbolic sets with the strong limit shadowing property Discrete Contin. Dyn. Syst 34 2963-2982
  • [10] Wen X(1971)Sets of dynamical systems with various limit shadowing properties Trans. Am. Math. Soc 158 301-308