On oscillation of eigenfunctions of a fourth-order problem with spectral parameters in the boundary conditions

被引:0
|
作者
Ben Amara J. [1 ]
Vladimirov A.A. [2 ]
机构
[1] University 7 November Carthage, Bizerte, Tunis
基金
俄罗斯基础研究基金会;
关键词
Spectral Problem; Negative Eigenvalue; Positive Eigenvalue; Positive Type; Negative Type;
D O I
10.1007/s10958-008-0131-z
中图分类号
学科分类号
摘要
In the paper, we study the problem on the number of zeros of eigenfunctions of the fourth-order boundary-value problem with spectral and physical parameters in the boundary conditions. We show that the number of zeros of the eigenfunctions corresponding to eigenvalues of positive type behaves in a usual way (it is equal to the serial number of an eigenvalue increased by 1), but, however, the number of zeros of the eigenfunction corresponding to an eigenvalue of negative type can be arbitrary. In the case of a sufficient smoothness of coefficients of the differential expression, we write the asymptotics in the physical parameter for such a number. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:2317 / 2325
页数:8
相关论文
共 50 条