An Extension of Polyak’s Theorem in a Hilbert Space

被引:0
作者
A. Baccari
B. Samet
机构
[1] Ecole Supérieure des Sciences et Techniques de Tunis,Département de Mathématiques
来源
Journal of Optimization Theory and Applications | 2009年 / 140卷
关键词
Convexity; Closure; Quadratic functions; Hilbert space;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be an infinite-dimensional real Hilbert space equipped with the scalar product (⋅,⋅)H. Let us consider three linear bounded operators, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{i}:H\rightarrow H,\quad\,i=1,2,3.$$\end{document} We define the functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{rcl}\varphi_{i}(x)&=&(A_{i}x,x)_{H}+2(a_{i},x)_{H}+\alpha_{i},\quad\forall x\in H,\ i=1,2,\\[3pt]f_{i}(x)&=&(A_{i}x,x)_{H},\quad\forall x\in H,\ i=1,2,3,\end{array}$$\end{document} where ai∈H and αi∈ℝ. In this paper, we discuss the closure and the convexity of the sets ΦH⊂ℝ2 and FH⊂ℝ3 defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{rcl}\Phi_{H}&=&\{(\varphi_{1}(x),\varphi_{2}(x))\mid x\in H\},\\[3pt]F_{H}&=&\{(f_{1}(x),f_{2}(x),f_{3}(x))\mid x\in H\}.\end{array}$$\end{document} Our work can be considered as an extension of Polyak’s results concerning the finite-dimensional case.
引用
收藏
页码:409 / 418
页数:9
相关论文
共 14 条
[1]  
Toeplitz O.(1918)Das algebraische Analogen zu einem Saiz von Fejer Math. Z. 2 187-197
[2]  
Hausdorff F.(1919)Der Wertvorrat einer Bilinearform Math. Z. 3 314-316
[3]  
Dines L.L.(1941)On the mapping of quadratic forms Bull. Am. Math. Soc. 47 494-498
[4]  
Brickman L.(1961)On the field of values of a matrix Proc. Am. Math. Soc. 12 61-66
[5]  
Yakubovich V.A.(1971)The S-procedure in nonlinear control theory Vestn. Leningr. Univ. 1 62-77
[6]  
Vershik A.M.(1984)Quadratic forms positive on a cone and quadratic duality Zap. Nauchn. Semin. LOMI 134 59-83
[7]  
Polyak T.B.(1998)Convexity of quadratic transformations and its use in control and optimization J. Optim. Theory Appl. 99 553-583
[8]  
Matveev A.S.(1996)Lagrange duality in nonconvex optimization theory and modifications of the Toeplitz-Hausdorff theorem St. Petersbg. Math. J. 7 787-815
[9]  
Matveev A.S.(1999)On the convexity of the ranges of quadratic mappings St. Petersbg. Math. J. 10 343-372
[10]  
Yakubovich V.A.(1992)Nonconvex optimization problem: The infinite-horizon linear-quadratic control problem with quadratic constraints Syst. Control Lett. 19 13-22