Estimates for solutions of bi-infinite systems of linear equations

被引:0
作者
Yuriy S. Volkov
Sergey I. Novikov
机构
[1] Sobolev Institute of Mathematics SB RAS,
[2] Krasovsky Institute of Mathematics and Mechanics UB RAS,undefined
来源
European Journal of Mathematics | 2022年 / 8卷
关键词
Difference equation; Infinite system of linear equations; Bi-infinite band matrix; Laurent’s matrix; Diagonal dominance; 15A06; 39A06; 15B05; 65F35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimating in uniform norm solutions of nonhomogeneous difference equations. Difference equations are considered as bi-infinite systems of linear algebraic equations. We give the estimate for Laurent’s matrices with diagonal dominance. Based on this result and an idea of decomposition of the matrix into a product of matrices associated with factorization of the characteristic polynomial, we propose estimates for any nonsingular banded Laurent matrix. The established estimates are attainable.
引用
收藏
页码:722 / 731
页数:9
相关论文
共 15 条
  • [1] Ahlberg JH(1963)Convergence properties of the spline fit J. Soc. Ind. Appl. Math. 11 95-104
  • [2] Nilson EN(1973)Explicit error bounds for periodic splines of odd order on a uniform mesh J. Inst. Math. Appl. 12 303-318
  • [3] Albasiny EL(1977)The infinity norm of a certain type of symmetric circulant matrix Math. Comput. 31 733-737
  • [4] Hoskins WD(1962)Integral equations on a half-line with a kernel depending upon the difference of the arguments Amer. Math. Soc. Transl. 22 163-288
  • [5] Hoskins WD(1981)A problem of extremal interpolation Math. Notes 29 310-320
  • [6] Meek DS(1977)Extremal problems of functional interpolation and interpolation-in-the-mean splines Proc. Steklov Inst. Math. 138 127-185
  • [7] Krein MG(2001)On a nonnegative solution of a system of equations with a symmetric circulant matrix Math. Notes 70 154-162
  • [8] Shevaldin VT(2004)A new method for constructing cubic interpolating splines Comput. Math. Math. Phys. 44 215-224
  • [9] Subbotin YuN(2020)Efficient computation of Favard constants and their connection to Euler polynomials and numbers Sib. Èlektron. Mat. Izv. 17 1921-1942
  • [10] Volkov YuS(2020)One problem of extremal functional interpolation and the Favard constants Dokl. Math. 102 474-477