On basic concepts of tropical geometry

被引:0
作者
O. Ya. Viro
机构
[1] Stony Brook University,Mathematics Department
[2] Russian Academy of Sciences,St. Petersburg Department of the Steklov Mathematical Institute
来源
Proceedings of the Steklov Institute of Mathematics | 2011年 / 273卷
关键词
STEKLOV Institute; Tropical Variety; Tropical Geometry; Newton Polytope; Ordinary Multiplication;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a binary operation over complex numbers that is a tropical analog of addition. This operation, together with the ordinary multiplication of complex numbers, satisfies axioms that generalize the standard field axioms. The algebraic geometry over a complex tropical hyperfield thus defined occupies an intermediate position between the classical complex algebraic geometry and tropical geometry. A deformation similar to the Litvinov-Maslov dequantization of real numbers leads to the degeneration of complex algebraic varieties into complex tropical varieties, whereas the amoeba of a complex tropical variety turns out to be the corresponding tropical variety. Similar tropical modifications with multivalued additions are constructed for other fields as well: for real numbers, p-adic numbers, and quaternions.
引用
收藏
页码:252 / 282
页数:30
相关论文
共 50 条
  • [1] Geometry in the tropical limit
    I. Itenberg
    G. Mikhalkin
    Mathematische Semesterberichte, 2012, 59 (1) : 57 - 73
  • [2] Newton polytopes and tropical geometry
    Kazarnovskii, B. Ya.
    Khovanskii, A. G.
    Esterov, A. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (01) : 91 - 175
  • [3] An invitation to tropical geometry
    Feichtner, Eva Maria
    EVOLUTIONARY AND INSTITUTIONAL ECONOMICS REVIEW, 2015, 12 (01) : 169 - 176
  • [4] Tropical algebraic geometry
    Odagiri, Shinsuke
    HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (04) : 771 - 795
  • [5] An invitation to tropical geometry
    Eva Maria Feichtner
    Evolutionary and Institutional Economics Review, 2015, 12 (1) : 169 - 176
  • [6] Geometry of tropical extensions of hyperfields
    Maxwell, James
    Smith, Ben
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [7] Matroid products in tropical geometry
    Anderson, Nicholas
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [8] Tropical geometry of Rado matroids
    Buchanan, Calum
    Danner, Richard
    DISCRETE MATHEMATICS LETTERS, 2024, 14 : 27 - 30
  • [9] Tropical Geometry and Machine Learning
    Maragos, Petros
    Charisopoulos, Vasileios
    Theodosis, Emmanouil
    PROCEEDINGS OF THE IEEE, 2021, 109 (05) : 728 - 755
  • [10] On Rational Equivalence in Tropical Geometry
    Allermann, Lars
    Hampe, Simon
    Rau, Johannes
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02): : 241 - 257