Gauss–Newton-type methods for bilevel optimization

被引:0
作者
Jörg Fliege
Andrey Tin
Alain Zemkoho
机构
[1] Management Sciences and Information Systems (CORMSIS),Centre for Operational Research
[2] University of Southampton,School of Mathematical Sciences
来源
Computational Optimization and Applications | 2021年 / 78卷
关键词
Bilevel optimization; Value function reformulation; Partial exact penalization; Gauss-Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This article studies Gauss–Newton-type methods for over-determined systems to find solutions to bilevel programming problems. To proceed, we use the lower-level value function reformulation of bilevel programs and consider necessary optimality conditions under appropriate assumptions. First, under strict complementarity for upper- and lower-level feasibility constraints, we prove the convergence of a Gauss–Newton-type method in computing points satisfying these optimality conditions under additional tractable qualification conditions. Potential approaches to address the shortcomings of the method are then proposed, leading to alternatives such as the pseudo or smoothing Gauss–Newton-type methods for bilevel optimization. Our numerical experiments conducted on 124 examples from the recently released Bilevel Optimization LIBrary (BOLIB) compare the performance of our method under different scenarios and show that it is a tractable approach to solve bilevel optimization problems with continuous variables.
引用
收藏
页码:793 / 824
页数:31
相关论文
共 50 条
  • [21] Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds
    Argyros, Ioannis K.
    Alberto Magrenan, Angel
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 453 - 467
  • [22] Comparing two Electrical Impedance Tomography algorithms: Gauss-Newton and topology optimization
    Motta-Mello, L. A.
    Lima, C. R.
    Aya, J. C.
    Pai, C. N.
    Moura, F. S.
    Silva, E. C. N.
    Gonzalez-Lima, R.
    MEDICAL IMAGING 2006: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES PTS 1 AND 2, 2006, 6143
  • [23] Gauss-Newton particle filter
    Cao, Hui
    Ohnishi, Noboru
    Takeuchi, Yoshinori
    Matsumoto, Tetsuya
    Kudo, Hiroaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (06) : 1235 - 1239
  • [24] A Study of a Posteriori Stopping in Iteratively Regularized Gauss-Newton-Type Methods for Approximating Quasi-Solutions of Irregular Operator Equations
    Kokurin, M. M.
    RUSSIAN MATHEMATICS, 2022, 66 (02) : 24 - 35
  • [25] Linearly convergent bilevel optimization with single-step inner methods
    Ensio Suonperä
    Tuomo Valkonen
    Computational Optimization and Applications, 2024, 87 : 571 - 610
  • [26] Linearly convergent bilevel optimization with single-step inner methods
    Suonpera, Ensio
    Valkonen, Tuomo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (02) : 571 - 610
  • [27] Multiobjective bilevel optimization
    Eichfelder, Gabriele
    MATHEMATICAL PROGRAMMING, 2010, 123 (02) : 419 - 449
  • [28] Robust fitting of implicitly defined surfaces using Gauss-Newton-type techniques
    Aigner, Martin
    Juettler, Bert
    VISUAL COMPUTER, 2009, 25 (08) : 731 - 741
  • [29] Multiobjective bilevel optimization
    Gabriele Eichfelder
    Mathematical Programming, 2010, 123 : 419 - 449
  • [30] Riemannian Bilevel Optimization
    Li, Jiaxiang
    Ma, Shiqian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26 : 1 - 44