Gauss–Newton-type methods for bilevel optimization

被引:0
|
作者
Jörg Fliege
Andrey Tin
Alain Zemkoho
机构
[1] Management Sciences and Information Systems (CORMSIS),Centre for Operational Research
[2] University of Southampton,School of Mathematical Sciences
来源
Computational Optimization and Applications | 2021年 / 78卷
关键词
Bilevel optimization; Value function reformulation; Partial exact penalization; Gauss-Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
This article studies Gauss–Newton-type methods for over-determined systems to find solutions to bilevel programming problems. To proceed, we use the lower-level value function reformulation of bilevel programs and consider necessary optimality conditions under appropriate assumptions. First, under strict complementarity for upper- and lower-level feasibility constraints, we prove the convergence of a Gauss–Newton-type method in computing points satisfying these optimality conditions under additional tractable qualification conditions. Potential approaches to address the shortcomings of the method are then proposed, leading to alternatives such as the pseudo or smoothing Gauss–Newton-type methods for bilevel optimization. Our numerical experiments conducted on 124 examples from the recently released Bilevel Optimization LIBrary (BOLIB) compare the performance of our method under different scenarios and show that it is a tractable approach to solve bilevel optimization problems with continuous variables.
引用
收藏
页码:793 / 824
页数:31
相关论文
共 50 条
  • [1] Gauss-Newton-type methods for bilevel optimization
    Fliege, Jorg
    Tin, Andrey
    Zemkoho, Alain
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 793 - 824
  • [2] Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments
    Fischer, Andreas
    Zemkoho, Alain B.
    Zhou, Shenglong
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05) : 1770 - 1804
  • [3] On the application of Newton-type methods to Fritz John optimality conditions
    A. F. Izmailov
    E. I. Uskov
    Computational Mathematics and Mathematical Physics, 2011, 51 : 1114 - 1127
  • [4] On the application of Newton-type methods to Fritz John optimality conditions
    Izmailov, A. F.
    Uskov, E. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) : 1114 - 1127
  • [5] Gauss-Newton methods for a class of nonsmooth optimization problems
    李冲
    王兴华
    ProgressinNaturalScience, 2000, (06) : 72 - 75
  • [6] Gauss-Newton methods for a class of nonsmooth optimization problems
    Li, C
    Wang, XH
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (06) : 470 - 473
  • [7] On Local Behavior of Newton-Type Methods Near Critical Solutions of Constrained Equations
    Izmailov, A. F.
    Solodov, M. V.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1103 - 1126
  • [8] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [9] Gauss-Newton Optimization for Phase Recovery From the Bispectrum
    Herring, James Lincoln
    Nagy, James
    Ruthotto, Lars
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 235 - 247
  • [10] A Metaheuristic for Bilevel Optimization Using Tykhonov Regularization and the Quasi-Newton Method
    Mejia-de-Dios, Jesus-Adolfo
    Mezura-Montes, Efren
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3134 - 3141