Sharp bounds for multiplier operators of negative indices associated with degenerate curves

被引:0
作者
Sanghyuk Lee
Ihyeok Seo
机构
[1] Seoul National University,School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2011年 / 267卷
关键词
Multiplier; Negative index; Primary 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we show the sharp Lp–Lq boundedness of multiplier operators of Bochner–Riesz type having negative indices of which singularity is located in degenerate curve in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document} . Lp–Lq boundedness of their maximal operators is also obtained.
引用
收藏
页码:291 / 323
页数:32
相关论文
共 33 条
[1]  
Bak J.-G.(1997)Sharp estimates for the Bochner-Riesz operator of negative order in Proc. Am. Math. Soc. 125 1977-1986
[2]  
Börjeson L.(1986)Estimates for the Bochner-Riesz operator with negative index Indiana U. Math. J. 35 225-233
[3]  
Carbery A.(1983)The boundedness of the maximal Bochner-Riesz operator on Duke Math. J. 50 409-416
[4]  
Carbery A.(2000)Weighted inequalities for Bochner-Riesz means in the plane Q. J. Math. 51 155-167
[5]  
Seeger A.(1988)Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an Rev. Mat. Iberoamericana 4 319-337
[6]  
Carbery A.(1972)-localisation principle Studia Math. 44 287-299
[7]  
Soria F.(2005)Oscillatory integrals and a multiplier problem for the disc J. Funct. Anal. 218 150-167
[8]  
Carleson L.(1985)Sharp Proc. Am. Math. Soc. 95 16-20
[9]  
Sjolin P.(1985)- Trans. Amer. Math. Soc. 287 223-238
[10]  
Cho Y.(1979) estimates for Bochner–Riesz operators of negative index in Duke Math. J. 46 505-511