Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators

被引:0
|
作者
Saureesh Das
Rashmi Bhardwaj
机构
[1] Guru Gobind Singh Indraprastha University,University School of Basic and Applied Sciences
来源
Nonlinear Dynamics | 2021年 / 104卷
关键词
Recurrence plot; Complex dynamics; Duffing oscillator; Dynamical transitions; Chaos synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the case of a Duffing oscillator driven by a sinusoidal voltage source, the behavior of various RQA parameters has been shown to reveal complex chaotic transitions taking place in its oscillatory behavior as the amplitude of forcing term is varied. The problem of synchronization of two identical Duffing oscillators coupled together resistively is further investigated using RQA. The simulated recurrence plot (RP) and plot for the τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-recurrence/recurrence probability, p(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\tau )$$\end{document}, have been used extensively over different control parameter regime to understand the dynamical complexity including chaos synchronization for both one-way and two-way coupled Duffing-type oscillators. The critical parameter beyond which chaos synchronization occurs in such systems is determined.
引用
收藏
页码:2127 / 2144
页数:17
相关论文
共 13 条
  • [1] Recurrence analysis and synchronization of two resistively coupled Duffing-type oscillators
    Das, Saureesh
    Bhardwaj, Rashmi
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2127 - 2144
  • [2] Chaos synchronization of resistively coupled Duffing systems: Numerical and experimental investigations
    Wembe, E. Tafo
    Yamapi, R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) : 1439 - 1453
  • [3] Synchronization of cross-well chaos in coupled duffing oscillators
    Vincent, UE
    Njah, AN
    Akinlade, O
    Solarin, ART
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (20): : 3205 - 3216
  • [4] Transient synchronization mutation of ring coupled Duffing oscillators driven by pulse signal
    Wu Yong-Feng
    Zhang Shi-Ping
    Sun Jin-Wei
    Rolfe, Peter
    Li Zhi
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [5] Mitigation of Nonlinear Structural Vibrations by Duffing-Type Oscillators Using Real-Time Hybrid Simulation
    Puhwein, A. Mario
    Hochrainer, Markus J.
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 153 - 163
  • [6] STABILITY BOUNDARY AND DURATION TIME OF SYNCHRONIZATION FOR COUPLED CHAOTIC MATHIEU-DUFFING OSCILLATORS
    Shen, Jianhe
    Cai, Jianping
    Chen, Shuhui
    Lin, Kechang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (27): : 4817 - 4831
  • [7] TOPOLOGICAL ENTROPY IN THE SYNCHRONIZATION OF PIECEWISE LINEAR AND MONOTONE MAPS. COUPLED DUFFING OSCILLATORS
    Caneco, Acilina
    Rocha, J. Leonel
    Gracio, Clara
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (11): : 3855 - 3868
  • [8] Phase synchronization and chaos suppression in a set of two coupled nonlinear oscillators
    Gonzalez-Miranda, JM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2105 - 2122
  • [9] Mathematical modelling, numerical and experimental analysis of one-degree-of-freedom oscillator with Duffing-type stiffness
    Witkowski, Krzysztof
    Kudra, Grzegorz
    Wasilewski, Grzegorz
    Awrejcewicz, Jan
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 138
  • [10] Experimental observations of synchronization between two bidirectionally coupled physically dissimilar oscillators
    Huang, Ke
    Sorrentino, Francesco
    Hossein-Zadeh, Mani
    PHYSICAL REVIEW E, 2020, 102 (04)