Finite element analysis of the vibration problem of a plate coupled with a fluid

被引:0
|
作者
R.G. Durán
L. Hervella-Nieto
E. Liberman
R. Rodríguez
J. Solomin
机构
[1] Departamento de Matemática,
[2] Facultad de Ciencias Exactas y Naturales,undefined
[3] Universidad de Buenos Aires,undefined
[4] 1428 - Buenos Aires,undefined
[5] Argentina ,undefined
[6] Departamento de Matemática,undefined
[7] Facultade de Informática,undefined
[8] Universidade da Coruña,undefined
[9] 15071 - A Coruña,undefined
[10] Spain ,undefined
[11] Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and Departamento de Matemática,undefined
[12] Facultad de Ciencias Exactas,undefined
[13] Universidad Nacional de La Plata,undefined
[14] C.C. 172.,undefined
[15] 1900 – La Plata,undefined
[16] Argentina ,undefined
[17] Departamento de Ingeniería Matemática,undefined
[18] Universidad de Concepción,undefined
[19] Casilla 160-C,undefined
[20] Concepción,undefined
[21] Chile ,undefined
[22] Departamento de Matemática,undefined
[23] Facultad de Ciencias Exactas,undefined
[24] Universidad Nacional de La Plata,undefined
[25] C.C. 172.,undefined
[26] 1900 - La Plata,undefined
[27] Argentina ,undefined
来源
Numerische Mathematik | 2000年 / 86卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t>0$\end{document}, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $t\to 0$\end{document}. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
引用
收藏
页码:591 / 616
页数:25
相关论文
共 50 条
  • [1] Finite element analysis of the vibration problem of a plate coupled with a fluid
    Durán, RG
    Hervella-Nieto, L
    Liberman, E
    Rodríguez, R
    Solomin, J
    NUMERISCHE MATHEMATIK, 2000, 86 (04) : 591 - 616
  • [2] FINITE ELEMENT APPROXIMATION OF EIGENVALUE PROBLEM FOR A COUPLED VIBRATION BETWEEN ACOUSTIC FIELD AND PLATE
    L. Deng
    T. Kako(Department of Computer Science and information Mathematics
    JournalofComputationalMathematics, 1997, (03) : 265 - 278
  • [3] Finite element approximation of eigenvalue problem for a coupled vibration between acoustic field and plate
    Deng, L
    Kako, T
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (03) : 265 - 278
  • [4] EFFICIENT AND FLEXIBLE FINITE ELEMENT PROCEDURE FOR FREE AND FORCED VIBRATION PROBLEMS OF A PLATE COUPLED WITH FLUID
    Ji, Ming
    Inaba, Kazuaki
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 4, 2020,
  • [5] Finite Element Analysis Of Free Vibration Of An Annular Plate
    Mattikalli, Anand C.
    Kurahatti, Rajashekar V.
    ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE, 2018, 1943
  • [6] VIBRATION ANALYSIS OF ELASTIC PLATE SUBMERGED IN INCOMPRESSIBLE VISCOUS FLUID BY COUPLING FINITE ELEMENT METHOD
    Wang Hui Pan Qingyu Cen Zhangzhi Du Qinghua (Department of Engineering Mechanics
    Acta Mechanica Solida Sinica, 1998, (01) : 1 - 12
  • [7] Vibration analysis of elastic plate submerged in incompressible viscous fluid by coupling finite element method
    Wang, H
    Pan, QG
    Cen, ZZ
    Du, QH
    ACTA MECHANICA SOLIDA SINICA, 1998, 11 (01) : 1 - 12
  • [8] Coupled finite element analysis of a sea chest vibration
    1600, Publ by Noise Control Foundation, Poughkeepsie, NY, USA (01):
  • [9] Strain-Based Mindlin Finite Element for Vibration Analysis of Rectangular Plates Coupled with a Fluid
    Boussem, Faisal
    Belounar, Abderahim
    Belounar, Lamine
    Fortas, Lahcene
    ROMANIAN JOURNAL OF ACOUSTICS AND VIBRATION, 2022, 19 (02): : 93 - 100
  • [10] Nonconforming finite element analysis for a plate contact problem
    Han, WM
    Wang, LH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) : 1683 - 1697