On the Diophantine equation x2 − kxy + y2 − 2n = 0

被引:0
|
作者
Refik Keskin
Zafer Şiar
Olcay Karaatli
机构
[1] Sakarya University,
[2] Bilecik Şeyh Edebali University,undefined
[3] Sakarya University,undefined
来源
Czechoslovak Mathematical Journal | 2013年 / 63卷
关键词
Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; 11B37; 11B39; 11B50; 11B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we determine when the Diophantine equation x2−kxy+y2−2n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x2 − kxy + y2 − 2n = 0.
引用
收藏
页码:783 / 797
页数:14
相关论文
共 50 条
  • [41] On the Diophantine equation X2 - (22m+1)Y4 =-22m
    He, Bo
    Togbe, Alain
    Walsh, P. Gary
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 417 - 420
  • [42] On the equation 1!k + 2!k + ⋯ + n!k = x2
    Luca F.
    Periodica Mathematica Hungarica, 2002, 44 (2) : 219 - 224
  • [43] ON THE DIOPHANTINE EQUATION y(p) = f (x(1), x(2),.., x(r))
    Srikanth, Raghavendran
    Subburam, Sivanarayanapandian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 58 (01) : 37 - 42
  • [44] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [45] A note on the exponential diophantine equation (an-1)(bn-1) = x2
    Keskin, Refik
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (05):
  • [46] The al-husayn equation x4 + y2 = z2
    S. Sh. Kozhegel’dinov
    Mathematical Notes, 2011, 89 : 349 - 360
  • [47] The exponential Diophantine equation x2+(3n 2+1) y = (4n 2+1) z
    Wang, Jianping
    Wang, Tingting
    Zhang, Wenpeng
    MATHEMATICA SLOVACA, 2014, 64 (05) : 1145 - 1152
  • [48] On the Diophantine equation f (x) f (y) = f (z2)
    Zhang, Yong
    Cai, Tianxin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 31 - 41
  • [49] ON THE DIOPHANTINE EQUATION x2+2α13β = yn
    Luca, Florian
    Togbe, Alain
    COLLOQUIUM MATHEMATICUM, 2009, 116 (01) : 139 - 146
  • [50] On the Diophantine equations z2 = f(x)2 ± f(x) f(y)
    Tang, Qiongzhi
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (02) : 88 - 100