On the Diophantine equation x2 − kxy + y2 − 2n = 0

被引:0
|
作者
Refik Keskin
Zafer Şiar
Olcay Karaatli
机构
[1] Sakarya University,
[2] Bilecik Şeyh Edebali University,undefined
[3] Sakarya University,undefined
来源
Czechoslovak Mathematical Journal | 2013年 / 63卷
关键词
Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; 11B37; 11B39; 11B50; 11B99;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we determine when the Diophantine equation x2−kxy+y2−2n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x2 − kxy + y2 − 2n = 0.
引用
收藏
页码:783 / 797
页数:14
相关论文
共 50 条
  • [1] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [2] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [3] A Generalized Fibonacci Sequence and the Diophantine Equations x(2) +/- kxy - y(2) +/- x = 0
    Bahramian, Mojtaba
    Daghigh, Hassan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 111 - 121
  • [4] Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0
    Marlewski, A
    Zarzycki, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (01) : 115 - 121
  • [5] The Diophantine equation x2 - (t2 + t)y2 - (4t+2)x + (4t2+4t)y=0
    Tekcan, Ahmet
    Ozkoc, Arzu
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 251 - 260
  • [6] Quadratic Diophantine Equation x2 - (t2 - t)y2 - (4t-2)x + (4t2-4t)y=0
    Ozkoc, Arzu
    Tekcan, Ahmet
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 273 - 280
  • [7] The Diophantine equation x2−(t2+t)y2−(4t+2)x+(4t2+4t)y=0
    Ahmet Tekcan
    Arzu Özkoç
    Revista Matemática Complutense, 2010, 23 : 251 - 260
  • [8] Variants of the Diophantine equation n!+1=y2
    Kihel, Omar
    Luca, Florian
    Togbe, Alain
    PORTUGALIAE MATHEMATICA, 2010, 67 (01) : 1 - 11
  • [9] On the Diophantine equation x(x+1) ••• (x + n)+1=y2
    Abe, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (02) : 16 - 17
  • [10] THE DIOPHANTINE EQUATION (bn)x + (2n)y = ((b+2)n)z
    Tang, Min
    Yang, Quan-Hui
    COLLOQUIUM MATHEMATICUM, 2013, 132 (01) : 95 - 100