A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method

被引:0
|
作者
Chong-Jun Li
Yan-Mei Jia
机构
[1] Dalian University of Technology,School of Mathematical Sciences
来源
关键词
Biharmonic problem; Quadrilateral element; Superconvergence; Spline interpolation bases; The B-net method; 65D07; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct a new nonconforming quadrilateral element with 12 degrees of freedom to solve the biharmonic problems. Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {T}}_{h}$$\end{document} is a triangulated quadrangulation of the domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. For a quadrilateral element QT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{T}$$\end{document}, the finite element space, which contains P3(QT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}_{3}(Q_{T})$$\end{document}, is a subspace of the bivariate spline space S31(QT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {S}}_{3}^{1}(Q_{T})$$\end{document}. The degrees of freedom are chosen as the four point values, the four edge integrals of the shape functions and the edge integrals of their normal derivatives such that the weak continuity between elements can be satisfied. Accordingly, we explicitly establish 12 spline interpolation bases in the B-net form. Error estimates are given with optimal convergence order in both discrete H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}$$\end{document} and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document} seminorms. The proposed element NCQS12 can get the superconvergence results with theoretical proof when Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {T}}_{h}$$\end{document} is an uniform parallelogram mesh. Some degenerate meshes are considered subsequently. Finally, we do some numerical experiments to verify the theoretical analysis. Numerical results show that the proposed element performs well over the asymptotically regular parallelogram meshes, which is same as over the uniform parallelogram meshes.
引用
收藏
相关论文
共 50 条