Short-distance wavefunction statistics in one-dimensional Anderson localization

被引:0
|
作者
H. Schomerus
M. Titov
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2003年 / 35卷
关键词
Distribution Function; Probability Distribution; Local Density; Probability Distribution Function; Anderson Localization;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the short-distance statistics of the local density of states \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu$\end{document} in long one-dimensional disordered systems, which display Anderson localization. It is shown that the probability distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\nu)$\end{document} can be recovered from the long-distance wavefunction statistics, if one also uses parameters that are irrelevant from the perspective of two-parameter scaling theory.
引用
收藏
页码:421 / 427
页数:6
相关论文
共 50 条
  • [41] Zero Energy Anomaly in One-Dimensional Anderson Lattice with Exponentially Correlated Weak Diagonal Disorder
    王宗国
    覃绍京
    康凯
    王垂林
    Communications in Theoretical Physics, 2012, 58 (08) : 280 - 284
  • [42] Zero Energy Anomaly in One-Dimensional Anderson Lattice with Exponentially Correlated Weak Diagonal Disorder
    Wang Zong-Guo
    Qin Shao-Jing
    Kang Kai
    Wang Chui-Lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (02) : 280 - 284
  • [43] Transmission, reflection and localization of waves in one-dimensional amplifying media with nonlinear gain
    Ba Phi Nguyen
    Kim, Kihong
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (11) : 1665 - 1670
  • [44] Critical analysis of the reentrant localization transition in a one-dimensional dimerized quasiperiodic lattice
    Roy, Shilpi
    Chattopadhyay, Sourav
    Mishra, Tapan
    Basu, Saurabh
    PHYSICAL REVIEW B, 2022, 105 (21)
  • [45] Localization transition in weakly interacting Bose superfluids in one-dimensional quasiperdiodic lattices
    Lellouch, Samuel
    Sanchez-Palencia, Laurent
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [46] Wannier-Stark localization in one-dimensional amplitude-chirped lattices
    Zeng, Qi-Bo
    Hou, Bo
    Xiao, Han
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [47] One-dimensional light localization with classical scatterers: An advanced undergraduate laboratory experiment
    Kemp, K. J.
    Barker, S.
    Guthrie, J.
    Hagood, B.
    Havey, M. D.
    AMERICAN JOURNAL OF PHYSICS, 2016, 84 (10) : 746 - 751
  • [48] Anomalous localization enhancement in one-dimensional non-Hermitian disordered lattices
    Ba Phi Nguyen
    Duy Khuong Phung
    Kim, Kihong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (04)
  • [49] Localization of a non interacting quantum wave packet in one-dimensional disordered potentials
    Moratti, M.
    Modugno, M.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (05):
  • [50] Many-body localization in a one-dimensional optical lattice with speckle disorder
    Maksymov, Artur
    Sierant, Piotr
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2020, 102 (13)