Short-distance wavefunction statistics in one-dimensional Anderson localization

被引:0
|
作者
H. Schomerus
M. Titov
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2003年 / 35卷
关键词
Distribution Function; Probability Distribution; Local Density; Probability Distribution Function; Anderson Localization;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the short-distance statistics of the local density of states \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu$\end{document} in long one-dimensional disordered systems, which display Anderson localization. It is shown that the probability distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\nu)$\end{document} can be recovered from the long-distance wavefunction statistics, if one also uses parameters that are irrelevant from the perspective of two-parameter scaling theory.
引用
收藏
页码:421 / 427
页数:6
相关论文
共 50 条
  • [31] A measure of localization properties of one-dimensional single electron lattice systems
    Gong, Longyan
    Li, Wenjia
    Zhao, Shengmei
    Cheng, Weiwen
    PHYSICS LETTERS A, 2016, 380 (1-2) : 59 - 64
  • [32] Localization of Bose-Fermi Mixtures in One-Dimensional Incommensurate Lattices
    Masaki, Akiko
    Mori, Hiroyuki
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [33] Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model
    Kozlov, G. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (01) : 531 - 540
  • [34] Localization landscape for interacting Bose gases in one-dimensional speckle potentials
    Stellin, Filippo
    Filoche, Marcel
    Dias, Frederic
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [35] Entanglement Entropy in a One-Dimensional Disordered Interacting System: The Role of Localization
    Berkovits, Richard
    PHYSICAL REVIEW LETTERS, 2012, 108 (17)
  • [36] Spectral dependence of the localization degree in the one-dimensional disordered Lloyd model
    G. G. Kozlov
    Theoretical and Mathematical Physics, 2012, 171 : 531 - 540
  • [37] Exponential localization in one-dimensional quasi-periodic optical lattices
    Modugno, Michele
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [38] Localization properties of the asymptotic density distribution of a one-dimensional disordered system
    Hainaut, Clement
    Clement, Jean-Francois
    Szriftgiser, Pascal
    Garreau, Jean Claude
    Rancon, Adam
    Chicireanu, Radu
    EUROPEAN PHYSICAL JOURNAL D, 2022, 76 (06):
  • [39] Disorderless Quasi-localization of Polar Gases in One-Dimensional Lattices
    Li, W.
    Dhar, A.
    Deng, X.
    Kasamatsu, K.
    Barbiero, L.
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [40] Conductance distribution at criticality: one-dimensional Anderson model with random long-range hopping
    Mendez-Bermudez, J. A.
    Gopar, Victor A.
    Varga, Imre
    ANNALEN DER PHYSIK, 2009, 18 (12) : 891 - 895