Short-distance wavefunction statistics in one-dimensional Anderson localization

被引:0
|
作者
H. Schomerus
M. Titov
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2003年 / 35卷
关键词
Distribution Function; Probability Distribution; Local Density; Probability Distribution Function; Anderson Localization;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the short-distance statistics of the local density of states \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu$\end{document} in long one-dimensional disordered systems, which display Anderson localization. It is shown that the probability distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\nu)$\end{document} can be recovered from the long-distance wavefunction statistics, if one also uses parameters that are irrelevant from the perspective of two-parameter scaling theory.
引用
收藏
页码:421 / 427
页数:6
相关论文
共 50 条
  • [21] Quantum Fisher Information of Localization Transitions in One-Dimensional Systems
    Liu, X. M.
    Du, Z. Z.
    Cheng, W. W.
    Liu, J. -M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (09) : 3033 - 3043
  • [22] Analytical Localization Lengths in an One-Dimensional Disordered Electron System
    Rauh, Alexander
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (3-4): : 205 - 221
  • [23] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [24] Geometric discord characterize localization transition in the one-dimensional systems
    Cheng, W. W.
    Gong, L. Y.
    Shan, C. J.
    Sheng, Y. B.
    Zhao, S. M.
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (06):
  • [25] Localization of Electromagnetic Waves in One-dimensional Nonlinear Random Media
    Nguyen, Ba Phi
    Kim, Kihong
    Rotermund, Fabian
    Lim, Haw
    2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 734 - +
  • [26] Localization and delocalization for strong disorder in one-dimensional continuous potentials
    Eleuch, H.
    Hilke, M.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [27] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [28] Kibble-Zurek scaling in one-dimensional localization transitions
    Bu, Xuan
    Zhai, Liang-Jun
    Yin, Shuai
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [29] Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices
    Maczewsky, Lukas J.
    Wang, Kai
    Dovgiy, Alexander A.
    Miroshnichenko, Andrey E.
    Moroz, Alexander
    Ehrhardt, Max
    Heinrich, Matthias
    Christodoulides, Demetrios N.
    Szameit, Alexander
    Sukhorukov, Andrey A.
    NATURE PHOTONICS, 2020, 14 (02) : 76 - +
  • [30] Localization in the one-dimensional systems with long-range correlated disorder
    Zhao Yi
    ACTA PHYSICA SINICA, 2010, 59 (01) : 532 - 535