Short-distance wavefunction statistics in one-dimensional Anderson localization

被引:0
|
作者
H. Schomerus
M. Titov
机构
[1] Max-Planck-Institut für Physik komplexer Systeme,
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2003年 / 35卷
关键词
Distribution Function; Probability Distribution; Local Density; Probability Distribution Function; Anderson Localization;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the short-distance statistics of the local density of states \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu$\end{document} in long one-dimensional disordered systems, which display Anderson localization. It is shown that the probability distribution function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P(\nu)$\end{document} can be recovered from the long-distance wavefunction statistics, if one also uses parameters that are irrelevant from the perspective of two-parameter scaling theory.
引用
收藏
页码:421 / 427
页数:6
相关论文
共 50 条