Conformal metrics of prescribed scalar curvature on 4-manifolds: the degree zero case

被引:8
作者
Ahmedou M. [1 ]
Chtioui H. [2 ]
机构
[1] Department of Mathematics, Giessen University, Arndtstrasse 2, Giessen
[2] Département de Mathématiques, Faculté des Sciences de Sfax, Route Soukra, Sfax
关键词
58E05; 35J65; 53C21; 35B40;
D O I
10.1007/s40065-017-0169-1
中图分类号
学科分类号
摘要
In this paper, we consider the problem of existence and multiplicity of conformal metrics on a Riemannian compact 4-dimensional manifold (M4, g) with positive scalar curvature. We prove a new existence criterium which provides existence results for a dense subset of positive functions and generalizes Bahri–Coron Euler–Poincaré type criterium. Our argument gives estimates of the Morse index of the founded solutions and has the advantage to extend known existence results. Moreover, it provides, for generic KMorse Inequalities at Infinity, which give a lower bound on the number of metrics with prescribed scalar curvature in terms of the topological contribution of its critical points at Infinity to the difference of topology between the level sets of the associated Euler–Lagrange functional. © 2017, The Author(s).
引用
收藏
页码:127 / 136
页数:9
相关论文
共 40 条
[1]  
Abraham R., Transversality in manifolds of mapping, Bull. Am. Math. Soc., 69, pp. 470-474, (1963)
[2]  
Ambrosetti A., Garcia Azorero J., Peral A., Perturbation of -Δu+u(N+2)(N-2)=0, the scalar curvature problem in R<sup>N</sup> and related topics, J. Funct. Anal., 165, pp. 117-149, (1999)
[3]  
Aubin T., Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55, pp. 269-296, (1976)
[4]  
Aubin T., Meilleures constantes de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32, pp. 148-174, (1979)
[5]  
Aubin T., Some Nonlinear Problems in Riemannian Geometry, (1998)
[6]  
Aubin T., Bahri A., Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. (French) [Methods of algebraic topology for the problem of prescribed scalar curvature], J. Math. Pures Appl., 76, 6, pp. 525-849, (1997)
[7]  
Aubin T., Bahri A., Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl., 76, 10, pp. 843-850, (1997)
[8]  
Aubin T., Hebey E., Courbure scalaire prescrite, Bull. Sci. Math., 115, pp. 125-132, (1991)
[9]  
Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182, (1989)
[10]  
Bahri A., An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension. A celebration of J. F. Nash Jr, Duke Math. J., 81, pp. 323-466, (1996)