Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2

被引:0
作者
Hsiang-Lin Liu
Teng Yang
Yuki Tatsumi
Ye Zhang
Baojuan Dong
Huaihong Guo
Zhidong Zhang
Yasuaki Kumamoto
Ming-Yang Li
Lain-Jong Li
Riichiro Saito
Satoshi Kawata
机构
[1] National Taiwan Normal University,Department of Physics
[2] Institute of Metal Research,Shenyang National Laboratory for Materials Science
[3] Chinese Academy of Sciences,Department of Physics
[4] Tohoku University,College of Sciences
[5] Liaoning Shihua University,Department of Applied Physics
[6] Osaka University 2-1 Yamadaoka,Physical Science and Engineering Division
[7] King Abdullah University of Science and Technology,Research Center for Applied Science
[8] Academia Sinica,Department of Pathology and Cell Regulation, Graduate School of Medical Sciences
[9] Kyoto Prefectural University of Medicine,undefined
来源
Scientific Reports | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Raman scattering measurements of monolayer WS2 are reported as a function of the laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (4.82 eV). In particular, we observed several strong Raman peaks in the range of 700∼850 cm−1 with the deep-ultraviolet laser lights (4.66 eV and 4.82 eV). Using the first-principles calculations, these peaks and other weak peaks were appropriately assigned by the double resonance Raman scattering spectra of phonons around the M and K points in the hexagonal Brillouin zone. The relative intensity of the first-order E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} to A1g peak changes dramatically with the 1.58 eV and 2.33 eV laser excitations, while the comparable relative intensity was observed for other laser energies. The disappearance of the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} peak with the 1.58 eV laser light comes from the fact that valley polarization of the laser light surpasses the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} mode since the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} mode is the helicity-exchange Raman mode. On the other hand, the disappearance of the A1g peak with the 2.33 eV laser light might be due to the strain effect on the electron-phonon matrix element.
引用
收藏
相关论文
共 153 条
[21]  
Wang QH(2013)Two-dimensional material nanophotonics ACS Nano 7 076802-undefined
[22]  
Kourosh KZ(2014)Charge-transfer-based gas sensing using atomic-layer MoS Phys. Rev. Lett. 113 153402-undefined
[23]  
Kis A(2015)Dichroic spin-valley photocurrent in monolayer molybdenum disulphide Sci. Rep. 5 196802-undefined
[24]  
Coleman JN(2011)Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide Phy. Rev. B 84 8174-undefined
[25]  
Strano MS(2012)Plasmon-exciton coupling of monolayer MoS Phys. Rev. Lett. 108 5511-undefined
[26]  
Chhowalla M(2014)-Ag nanoparticles hybrids for surface catalytic reaction, Materials Today ACS Nano 8 14974-undefined
[27]  
Larentis S(2014)Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy Sci. Rep. 4 263902-undefined
[28]  
Fallahazad B(2013)Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry Adv. Funct. Mater. 23 6866-undefined
[29]  
Tutuc E(2015)Nonblinking, intense two-dimensional light emitter: monolayer WS Nanoscale 7 2757-undefined
[30]  
Bernardi M(2016) triangles Sci. Rep. 6 1196-undefined