Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2

被引:0
作者
Hsiang-Lin Liu
Teng Yang
Yuki Tatsumi
Ye Zhang
Baojuan Dong
Huaihong Guo
Zhidong Zhang
Yasuaki Kumamoto
Ming-Yang Li
Lain-Jong Li
Riichiro Saito
Satoshi Kawata
机构
[1] National Taiwan Normal University,Department of Physics
[2] Institute of Metal Research,Shenyang National Laboratory for Materials Science
[3] Chinese Academy of Sciences,Department of Physics
[4] Tohoku University,College of Sciences
[5] Liaoning Shihua University,Department of Applied Physics
[6] Osaka University 2-1 Yamadaoka,Physical Science and Engineering Division
[7] King Abdullah University of Science and Technology,Research Center for Applied Science
[8] Academia Sinica,Department of Pathology and Cell Regulation, Graduate School of Medical Sciences
[9] Kyoto Prefectural University of Medicine,undefined
来源
Scientific Reports | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Raman scattering measurements of monolayer WS2 are reported as a function of the laser excitation energies from the near-infrared (1.58 eV) to the deep-ultraviolet (4.82 eV). In particular, we observed several strong Raman peaks in the range of 700∼850 cm−1 with the deep-ultraviolet laser lights (4.66 eV and 4.82 eV). Using the first-principles calculations, these peaks and other weak peaks were appropriately assigned by the double resonance Raman scattering spectra of phonons around the M and K points in the hexagonal Brillouin zone. The relative intensity of the first-order E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} to A1g peak changes dramatically with the 1.58 eV and 2.33 eV laser excitations, while the comparable relative intensity was observed for other laser energies. The disappearance of the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} peak with the 1.58 eV laser light comes from the fact that valley polarization of the laser light surpasses the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} mode since the E2g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\boldsymbol{E}}}_{{\bf{2}}{\boldsymbol{g}}}^{{\bf{1}}}$$\end{document} mode is the helicity-exchange Raman mode. On the other hand, the disappearance of the A1g peak with the 2.33 eV laser light might be due to the strain effect on the electron-phonon matrix element.
引用
收藏
相关论文
共 153 条
[1]  
Mak KF(2010)Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805-undefined
[2]  
Lee C(2010)Emerging photoluminescence in monolayer MoS Nano Lett. 10 1271-undefined
[3]  
Hone J(2012)Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe Nano Lett. 12 5576-undefined
[4]  
Shan J(2013) versus MoS Nano Lett. 13 3447-undefined
[5]  
Heinz TF(2013)Extraordinary room-temperature photoluminescence in triangular WS ACS Nano 7 791-undefined
[6]  
Splendiani A(2011) monolayers Nano Lett. 11 3768-undefined
[7]  
Tongay S(2011)Evolution of electronic structure in atomically thin sheets of WS Nature Nanotech. 6 147-undefined
[8]  
Gutuerrez HR(2011) and WSe ACS Nano 5 9934-undefined
[9]  
Zhao W(2012)How good can monolayer MoS Nature Nanotech. 7 699-undefined
[10]  
Yoon Y(2013) transistors be? Chemistry 5 263-undefined