The Krull Dimension of Certain Semiprime Modules Versus Their α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Shortness

被引:0
作者
S. M. Javdannezhad
N. Shirali
机构
[1] Shahid Chamran University of Ahvaz,Department of Mathematics
关键词
module; Krull dimension; classical Krull dimension; Primary 16P60; 16P20; Secondary 16P40;
D O I
10.1007/s00009-018-1163-3
中图分类号
学科分类号
摘要
We study the R-modules M which are finitely generated, quasi-projective and self-generator (briefly called FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} modules). We extend some basic results from semiprime rings to semiprime FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} modules. In particular, we show that any semiprime FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} module with Krull dimension is a Goldie module. We also show that every FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} module with Krull dimension has only finitely many minimal prime submodules. Consequently, if M is an FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} module with Krull dimension, then k-dimM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ k-dim }\,M$$\end{document} is equal to k-dimMP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ k-dim }\,\frac{M}{P}$$\end{document} for some prime submodule P of M. Moreover, we observe that an FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} module has the classical Krull dimension if and only if it satisfies ACC on prime submodules. Finally, we prove that a semiprime FQS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{FQS}}}$$\end{document} module M is α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-short if and only if n-dimM=α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ n-dim }\, M =\alpha ,$$\end{document} where α≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0.$$\end{document}
引用
收藏
相关论文
共 39 条
[1]  
Albu T(2001)Chain conditions on quotient finite dimensional modules Commun. Algebra 29 1909-1928
[2]  
Rizvi S(1999)Dual Krull dimension and duality Rocky Mt. J. Math. 29 1153-1165
[3]  
Albu T(1996)Localization of modular lattices, Krull dimension, and the Hopkins–Levitzki Theorem (I) Math. Proc. Camb. Philos. Soc. 120 87-101
[4]  
Smith PF(2000)Generalized deviation of posets and modular lattices Discret. Math. 214 1-19
[5]  
Albu T(2004)Modules whose certain submodules are prime Vietnam J. Math. 32 303-317
[6]  
Smith PF(2006)Short modules and almost Noetherian modules Math. Scand. 98 12-18
[7]  
Albu T(1987)On modules with DICC J. Algebra 107 75-81
[8]  
Teply L(1987)On DICC rings J. Algebra 105 429-436
[9]  
Behboodi M(1986)On rings and modules with DICC J. Algebra 101 489-496
[10]  
Karamzadeh OAS(2014)On Math. Scand. 114 26-37