Non Semi-Simple \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak {sl}(2)}$\end{document} Quantum Invariants, Spin Case

被引:0
|
作者
Christian Blanchet
Francesco Costantino
Nathan Geer
Bertrand Patureau-Mirand
机构
[1] Univ Paris Diderot,IMJ
[2] Université de Toulouse III Paul Sabatier,PRG, UMR 7586 CNRS, Univ Paris Diderot, Sorbonne Paris Cité
[3] Utah State University,Institut de Mathématiques de Toulouse (IMT)
[4] Univ. Bretagne - Sud,Mathematics and Statistics
[5] UMR 6205,undefined
[6] LMBA,undefined
关键词
Quantum invariants; 3-manifolds; Non semi-simple; Spin structures; 57M27;
D O I
10.1007/s40306-014-0089-5
中图分类号
学科分类号
摘要
Invariants of 3-manifolds from a non semi-simple category of modules over a version of quantum 𝔰𝔩(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak {sl}(2)}$\end{document} were obtained by the last three authors in Costantino et al. (To appear in J. Topology. arXiv:1202.3553). In their construction, the quantum parameter q is a root of unity of order 2r where r>1 is odd or congruent to 2 modulo 4. In this paper, we consider the remaining cases where r is congruent to zero modulo 4 and produce invariants of 3-manifolds with colored links, equipped with generalized spin structure. For a given 3-manifold M, the relevant generalized spin structures are (non canonically) parametrized by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(M;\mathbb{C}/2\mathbb{Z})$\end{document}.
引用
收藏
页码:481 / 495
页数:14
相关论文
共 2 条