Mathematical evaluation of the role of cross immunity and nonlinear incidence rate on the transmission dynamics of two dengue serotypes

被引:0
|
作者
Sutawas Janreung
Wirawan Chinviriyasit
Settapat Chinviriyasit
机构
[1] King Mongkut’s University of Technology Thonburi (KMUTT),Department of Mathematics, Faculty of Science
来源
Advances in Difference Equations | / 2020卷
关键词
Dengue; Cross immunity; Nonlinear incidence; Secondary infection;
D O I
暂无
中图分类号
学科分类号
摘要
Dengue fever is a common disease which can cause shock, internal bleeding, and death in patients if a second infection is involved. In this paper, a multi-serotype dengue model with nonlinear incidence rate is formulated to study the transmission of two dengue serotypes. The dynamical behaviors of the proposed model depend on the threshold value R0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{{0}}^{{n}}$\end{document} known as the reproductive number which depends on the associated reproductive numbers with serotype-1 and serotype-2. The value of R0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{{0}}^{{n}}$\end{document} is used to reflect whether the disease dies out or becomes endemic. It is found that the proposed model has a globally stable disease-free equilibrium if R0n≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{{0}}^{{n}}\leq 1$\end{document}, which indicates that if public health measures that make (and keep) the threshold to a value less than unity are carried out, the strategy in disease control is effective in the sense that the number of infected human and mosquito populations in the community will be brought to zero irrespective of the initial sizes of sub-populations. When R0n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{{0}}^{{n}}>1$\end{document}, the endemic equilibria called the co-existence primary and secondary infection equilibria are locally asymptotically stable. The effects of cross immunity and nonlinear incidence rate are explored using data from Thailand to determine the effective strategy in controlling and preventing dengue transmission and reinfection.
引用
收藏
相关论文
共 5 条
  • [1] Mathematical evaluation of the role of cross immunity and nonlinear incidence rate on the transmission dynamics of two dengue serotypes
    Janreung, Sutawas
    Chinviriyasit, Wirawan
    Chinviriyasit, Settapat
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Transmission dynamics of two dengue serotypes with vaccination scenarios
    Gonzalez Morales, N. L.
    Nunez-Lopez, M.
    Ramos-Castaneda, J.
    Velasco-Hernandez, J. X.
    MATHEMATICAL BIOSCIENCES, 2017, 287 : 54 - 71
  • [3] Transmission dynamics of multi-strain dengue virus with cross-immunity
    Xue, Ling
    Zhang, Hongyu
    Sun, Wei
    Scoglio, Caterina
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [4] Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission
    Abidemi, Afeez
    Owolabi, Kolade M.
    Pindza, Edson
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 597
  • [5] Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza
    Garba, S. M.
    Safi, M. A.
    Gumel, A. B.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1384 - 1403