Certain results on generalized (k,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(k,\,\mu )}}$$\end{document}-contact metric manifolds

被引:4
作者
U. C. De
Krishanu Mandal
机构
[1] University of Calcutta,Department of Pure Mathematics
关键词
Generalized (; )-contact manifold; second order parallel tensor; Ricci soliton; Sasakian manifold; 53C15; 53C25;
D O I
10.1007/s00022-016-0362-y
中图分类号
学科分类号
摘要
The object of the present paper is to study second order symmetric parallel tensors in generalized (k,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\,\mu )$$\end{document}-contact metric manifolds and its applications to Ricci solitons. Next, we prove that a generalized (k,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\,\mu )$$\end{document}-contact metric manifold M admits a Ricci soliton whose potential vector field is the Reeb vector field ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} if and only if M is a Sasaki–Einstein manifold. Finally, we give some examples of generalized (k,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\,\mu )$$\end{document}-contact metric manifold.
引用
收藏
页码:611 / 621
页数:10
相关论文
共 23 条
[1]  
Bejan CL(2014)Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry Ann. Glob. Anal. Geom. 46 117-127
[2]  
Crasmareanu M(1995)Contact metric manifolds satisfying a nullity condition Isr. J. Math. 91 189-214
[3]  
Blair DE(2010)From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds Bull. Malays. Math. Sci. Soc. 33 361-368
[4]  
Koufogiorgos T(2011)Notes on contact Ricci solitons Proc. Edinb. Math. Soc. 54 47-53
[5]  
Papantoniou BJ(1996)Second order parallel tensor on P-Sasakian manifolds Publ. Math. Debrecen 49 33-37
[6]  
Calin C(1923)Symmetric tensors of the second order whose first covariant derivatives are zero Trans. Am. Math. Soc. 25 297-306
[7]  
Crasmareanu M(1993)Ricci solitons on compact 3-manifolds Differ. Geom. Appl. 3 301-307
[8]  
Cho JT(2012)Notes on some classes of 3-dimensional contact metric manifolds Balkan J. Geom. Appl. 17 54-65
[9]  
De UC(2000)On the existence of new class of contact metric manifolds Can. Math. Bull. 43 440-447
[10]  
Eisenhart LP(1926)Symmetric tensors of the second order whose covariant derivatives vanish Ann. Math. 27 91-98