Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model

被引:0
作者
Yufeng Yin
Wenbo Wang
Min Yu
机构
[1] Wuhan University of Technology,Hubei Province Key Laboratory of System Science in Metallurgical Process
来源
Transactions on Electrical and Electronic Materials | 2024年 / 25卷
关键词
Microgrids; Short-term load forecasting; TVFEMD; Permutation entropy; ARMAX;
D O I
暂无
中图分类号
学科分类号
摘要
The accuracy of short-term load forecasting in microgrids is crucial for their safe and economic operation. Microgrids have higher unpredictability than large power grids, making it more challenging to accurately predict short-term loads. To address this challenge, a novel approach that combines the time-varying filtered empirical mode decomposition (TVFEMD), Long Short Term Memory neural network (LSTM), and the simple moving average auto regressive model with additional inputs (ARMAX) methods is proposed. The TVFEMD is used to decompose the load sequences of microgrids, with the permutation entropy (PE) used to calculate the entropy values of subsequences. The model errors of ARMA and LSTM are verified to divide high and low frequencies, and weather and day patterns are selected as influencing factors. The LSTM model forecasts high frequency subsequences, while the ARMAX forecasts low frequency subsequences. The proposed TVFEMD-LSTM-ARMAX model is then applied to two microgrids in Taiyuan, China. The results show that permutation entropy method can accurately divide high and low frequencies, and the proposed TVFEMD-LSTM-ARMAX model can significantly improve the forecasting effect.
引用
收藏
页码:265 / 279
页数:14
相关论文
共 50 条
  • [41] A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
    Rafi, Shafiul Hasan
    Nahid-Al-Masood
    Deeba, Shohana Rahman
    Hossain, Eklas
    IEEE ACCESS, 2021, 9 : 32436 - 32448
  • [42] Short-Term Load Forecasting for Microgrid Considering Weather Characteristics and SourceLoad Correlation
    Na, Cao
    Haoshuo, Fang
    2024 IEEE 2ND INTERNATIONAL CONFERENCE ON POWER SCIENCE AND TECHNOLOGY, ICPST 2024, 2024, : 1160 - 1169
  • [43] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    Reis, AJR
    da Silva, APA
    APPLIED SOFT COMPUTING, 2004, 4 (04) : 405 - 412
  • [44] Missing-Insensitive Short-Term Load Forecasting Leveraging Autoencoder and LSTM
    Park, Kyungnam
    Jeong, Jaeik
    Kim, Dongjoo
    Kim, Hongseok
    IEEE ACCESS, 2020, 8 : 206039 - 206048
  • [45] A Novel NODE Approach Combined with LSTM for Short-Term Electricity Load Forecasting
    Huang, Songtao
    Shen, Jun
    Lv, Qingquan
    Zhou, Qingguo
    Yong, Binbin
    FUTURE INTERNET, 2023, 15 (01):
  • [46] Regression Model-Based Short-Term Load Forecasting for University Campus Load
    Madhukumar, Mithun
    Sebastian, Albino
    Liang, Xiaodong
    Jamil, Mohsin
    Shabbir, Md Nasmus Sakib Khan
    IEEE ACCESS, 2022, 10 : 8891 - 8905
  • [47] NEURAL NETWORK BASED SHORT-TERM LOAD FORECASTING
    LU, CN
    WU, HT
    VEMURI, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (01) : 336 - 342
  • [48] ANN based Short-Term Load Curve Forecasting
    Chis, V
    Barbulescu, C.
    Kilyeni, S.
    Dzitac, S.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2018, 13 (06) : 938 - 955
  • [49] Short-Term Power Load Forecasting Based on SVM
    Ye, Ning
    Liu, Yong
    Wang, Yong
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [50] Nonparametric regression based short-term load forecasting
    Charytoniuk, W
    Chen, MS
    Van Olinda, P
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (03) : 725 - 730