Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model

被引:0
作者
Yufeng Yin
Wenbo Wang
Min Yu
机构
[1] Wuhan University of Technology,Hubei Province Key Laboratory of System Science in Metallurgical Process
来源
Transactions on Electrical and Electronic Materials | 2024年 / 25卷
关键词
Microgrids; Short-term load forecasting; TVFEMD; Permutation entropy; ARMAX;
D O I
暂无
中图分类号
学科分类号
摘要
The accuracy of short-term load forecasting in microgrids is crucial for their safe and economic operation. Microgrids have higher unpredictability than large power grids, making it more challenging to accurately predict short-term loads. To address this challenge, a novel approach that combines the time-varying filtered empirical mode decomposition (TVFEMD), Long Short Term Memory neural network (LSTM), and the simple moving average auto regressive model with additional inputs (ARMAX) methods is proposed. The TVFEMD is used to decompose the load sequences of microgrids, with the permutation entropy (PE) used to calculate the entropy values of subsequences. The model errors of ARMA and LSTM are verified to divide high and low frequencies, and weather and day patterns are selected as influencing factors. The LSTM model forecasts high frequency subsequences, while the ARMAX forecasts low frequency subsequences. The proposed TVFEMD-LSTM-ARMAX model is then applied to two microgrids in Taiyuan, China. The results show that permutation entropy method can accurately divide high and low frequencies, and the proposed TVFEMD-LSTM-ARMAX model can significantly improve the forecasting effect.
引用
收藏
页码:265 / 279
页数:14
相关论文
共 50 条
  • [31] Short-Term Load Forecasting Using Hybrid GMDH-LSTM Model Optimized by ICPA
    Chen, Gonggui
    Bai, Jie
    Chen, Tewei
    Wang, Wei
    Wang, Zongfu
    Long, Hongyu
    Zou, Mi
    ENGINEERING LETTERS, 2022, 30 (04)
  • [32] Short-Term Load Forecasting Based on PSO-KFCM Daily Load Curve Clustering and CNN-LSTM Model
    Shang, Chuan
    Gao, Junwei
    Liu, Huabo
    Liu, Fuzheng
    IEEE ACCESS, 2021, 9 : 50344 - 50357
  • [33] Short-Term Load Forecasting Model Based on Deep Neural Network
    Xue Hui
    Wang Qun
    Li Yao
    Zhang Yingbin
    Shi Lei
    Zhang Zhisheng
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 589 - 591
  • [34] Temporal Convolutional Network Based Short-term Load Forecasting Model
    Gu, Kaiming
    Jia, Li
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 584 - 589
  • [35] Short-term power load forecasting based on combination of residual network and Bi-LSTM
    Li Y.
    Yin P.
    Chen J.
    Zhang Y.
    Yao B.
    Liu W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2023, 55 (08): : 79 - 86
  • [36] LSTM-RBF Short-Term Load Forecasting Method Based on Gaussian Similar Days
    Jiao, Min
    Qi, Xiaoyan
    Mneg, Fanmin
    Wang, Tao
    Hou, Qiuhua
    Zheng, Xudong
    Zhou, Haoyang
    2023 5TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES, 2023, : 1189 - 1194
  • [37] Application of RMLPNN model to short-term load forecasting
    Lu Jian-chang
    Sun Wei
    Li Jian-qiang
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 351 - 354
  • [38] A fuzzy inference model for short-term load forecasting
    Mamlook, Rustum
    Badran, Omar
    Abdulhadi, Emad
    ENERGY POLICY, 2009, 37 (04) : 1239 - 1248
  • [39] A Short-Term Household Load Forecasting Framework Using LSTM and Data Preparation
    Ageng, Derni
    Huang, Chin-Ya
    Cheng, Ray-Guang
    IEEE ACCESS, 2021, 9 : 167911 - 167919
  • [40] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374