Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model

被引:0
|
作者
Yufeng Yin
Wenbo Wang
Min Yu
机构
[1] Wuhan University of Technology,Hubei Province Key Laboratory of System Science in Metallurgical Process
来源
Transactions on Electrical and Electronic Materials | 2024年 / 25卷
关键词
Microgrids; Short-term load forecasting; TVFEMD; Permutation entropy; ARMAX;
D O I
暂无
中图分类号
学科分类号
摘要
The accuracy of short-term load forecasting in microgrids is crucial for their safe and economic operation. Microgrids have higher unpredictability than large power grids, making it more challenging to accurately predict short-term loads. To address this challenge, a novel approach that combines the time-varying filtered empirical mode decomposition (TVFEMD), Long Short Term Memory neural network (LSTM), and the simple moving average auto regressive model with additional inputs (ARMAX) methods is proposed. The TVFEMD is used to decompose the load sequences of microgrids, with the permutation entropy (PE) used to calculate the entropy values of subsequences. The model errors of ARMA and LSTM are verified to divide high and low frequencies, and weather and day patterns are selected as influencing factors. The LSTM model forecasts high frequency subsequences, while the ARMAX forecasts low frequency subsequences. The proposed TVFEMD-LSTM-ARMAX model is then applied to two microgrids in Taiyuan, China. The results show that permutation entropy method can accurately divide high and low frequencies, and the proposed TVFEMD-LSTM-ARMAX model can significantly improve the forecasting effect.
引用
收藏
页码:265 / 279
页数:14
相关论文
共 50 条
  • [1] Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model
    Yin, Yufeng
    Wang, Wenbo
    Yu, Min
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2024, 25 (03) : 265 - 279
  • [2] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [3] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174
  • [4] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [5] A New Hybrid Model Based on SCINet and LSTM for Short-Term Power Load Forecasting
    Liu, Mingping
    Li, Yangze
    Hu, Jiangong
    Wu, Xiaolong
    Deng, Suhui
    Li, Hongqiao
    ENERGIES, 2024, 17 (01)
  • [6] An ensemble deep learning model for short-term load forecasting based on ARIMA and LSTM
    Tang, Lingling
    Yi, Yulin
    Peng, Yuexing
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [7] Short-term power load forecasting based on DQN-LSTM
    Guo, Xifeng
    Jiang, Yuxin
    Li, Lingyan
    Fu, Guojiang
    Yao, Shu
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 855 - 860
  • [8] Short-Term Load Forecasting Based on the Transformer Model
    Zhao, Zezheng
    Xia, Chunqiu
    Chi, Lian
    Chang, Xiaomin
    Li, Wei
    Yang, Ting
    Zomaya, Albert Y.
    INFORMATION, 2021, 12 (12)
  • [9] Short-term load forecasting for microgrid energy management system using hybrid SPM-LSTM
    Jahani, Arezoo
    Zare, Kazem
    Khanli, Leyli Mohammad
    SUSTAINABLE CITIES AND SOCIETY, 2023, 98
  • [10] Short-Term Load Forecasting of Microgrid Based on Chaotic Particle Swarm Optimization
    Ma, Han
    Tang, Jing Min
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INTELLIGENT ROBOTICS (ICMIR-2019), 2020, 166 : 546 - 550