Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics

被引:0
|
作者
Chiara Boccato
Serena Cenatiempo
Benjamin Schlein
机构
[1] University of Zurich,Institute of Mathematics
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the many-body quantum dynamics of systems of bosons interacting through a two-body potential N3β-1V(Nβx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^{3\beta-1} V (N^\beta x)}$$\end{document}, scaling with the number of particles N. For 0<β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \beta < 1}$$\end{document}, we obtain a norm-approximation of the evolution of an appropriate class of data on the Fock space. To this end, we need to correct the evolution of the condensate described by the one-particle nonlinear Schrödinger equation by means of a fluctuation dynamics, governed by a quadratic generator.
引用
收藏
页码:113 / 191
页数:78
相关论文
共 50 条
  • [1] Quantum Many-Body Fluctuations Around Nonlinear Schrodinger Dynamics
    Boccato, Chiara
    Cenatiempo, Serena
    Schlein, Benjamin
    ANNALES HENRI POINCARE, 2017, 18 (01): : 113 - 191
  • [2] Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation
    Xuwen Chen
    Justin Holmer
    Archive for Rational Mechanics and Analysis, 2016, 221 : 631 - 676
  • [3] Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems
    László Erdős
    Benjamin Schlein
    Horng-Tzer Yau
    Inventiones mathematicae, 2007, 167 : 515 - 614
  • [4] Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons
    Jürg Fröhlich
    Sandro Graffi
    Simon Schwarz
    Communications in Mathematical Physics, 2007, 271 : 681 - 697
  • [5] On the Rigorous Derivation of the 2D Cubic Nonlinear Schrödinger Equation from 3D Quantum Many-Body Dynamics
    Xuwen Chen
    Justin Holmer
    Archive for Rational Mechanics and Analysis, 2013, 210 : 909 - 954
  • [6] A new method of solving the many-body Schrödinger equation
    V. M. Tapilin
    Journal of Structural Chemistry, 2017, 58 : 1 - 8
  • [7] Many-Body Quantum Field Models for Nonlinear Brain Dynamics
    Islam, Asim
    JOURNAL OF COGNITIVE SCIENCE, 2020, 21 (03) : 385 - 428
  • [8] Dynamics of many-body quantum synchronisation
    Davis-Tilley, C.
    Teoh, C. K.
    Armour, A. D.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [9] Nuclear quantum many-body dynamics
    Simenel, Cedric
    EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (11):
  • [10] Caustics in quantum many-body dynamics
    Kirkby, W.
    Yee, Y.
    Shi, K.
    O'Dell, D. H. J.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):