A metasemantic challenge for mathematical determinacy

被引:0
作者
Jared Warren
Daniel Waxman
机构
[1] New York University,
来源
Synthese | 2020年 / 197卷
关键词
Determinacy; Indeterminacy; Metasemantics; Philosophy of mathematics; Incompleteness;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy (Sect. 1) before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics (Sect. 2). From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate (Sect. 3), motivate two important constraints on attempts to meet our challenge (Sect. 4), and then use these constraints to develop an argument against determinacy (Sect. 5) and discuss a particularly popular approach to resolving indeterminacy (Sect. 6), before offering some brief closing reflections (Sect. 7). We believe our discussion poses a serious challenge for most philosophical theories of mathematics, since it puts considerable pressure on all views that accept a non-trivial amount of determinacy for even basic arithmetic.
引用
收藏
页码:477 / 495
页数:18
相关论文
共 38 条
[1]  
Balaguer M(1996)Towards a nominalization of quantum mechanics Mind 105 209-226
[2]  
Beltrami E(1868)Saggio di interpretazione della geometria non-euclidea Giornale di Mathematiche VI 285-315
[3]  
Beltrami E(1868)Teoria fondamentale degli spazii di curvatura costante Annali di Matematica Pura ed Applicata 2 232-255
[4]  
Benacerraf P(1967)God, the Devil, and Gödel The Monist 51 9-32
[5]  
Benacerraf P(1973)Mathematical truth Journal of Philosophy 70 661-680
[6]  
Boolos G(1990)On “seeing” the truth of the Gödel sentence Behavioral and Brain Sciences 13 655-656
[7]  
Button T(2011)The philosophical significance of Tennenbaum’s theorem Philosophia Mathematica (III) 00 1-8
[8]  
Smith P(2013)What is absolute undecidability? Noûs 47 467-481
[9]  
Clarke-Doane J(1963)The independence of the continuum hypothesis I Proceedings of the National Academy of Sciences of the United States 50 1143-1148
[10]  
Cohen P(1964)The independence of the continuum hypothesis II Proceedings of the National Academy of Sciences of the United States 51 105-110