Supergroup structure of Jackiw-Teitelboim supergravity

被引:0
作者
Yale Fan
Thomas G. Mertens
机构
[1] University of Texas at Austin,Theory Group, Department of Physics
[2] Ghent University,Department of Physics and Astronomy
来源
Journal of High Energy Physics | / 2022卷
关键词
2D Gravity; Models of Quantum Gravity; Supergravity Models; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the gauge theory formulation of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Jackiw-Teitelboim supergravity in terms of the underlying OSp(1|2, ℝ) supergroup, focusing on boundary dynamics and the exact structure of gravitational amplitudes. We prove that the BF description reduces to a super-Schwarzian quantum mechanics on the holographic boundary, where boundary-anchored Wilson lines map to bilocal operators in the super-Schwarzian theory. A classification of defects in terms of monodromies of OSp(1|2, ℝ) is carried out and interpreted in terms of character insertions in the bulk. From a mathematical perspective, we construct the principal series representations of OSp(1|2, ℝ) and show that whereas the corresponding Plancherel measure does not match the density of states of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 JT supergravity, a restriction to the positive subsemigroup OSp+(1|2, ℝ) yields the correct density of states, mirroring the analogous results for bosonic JT gravity. We illustrate these results with several gravitational applications, in particular computing the late-time complexity growth in JT supergravity.
引用
收藏
相关论文
共 196 条
[51]  
Mertens TG(1995)undefined Nucl. Phys. B Proc. Suppl. 41 184-undefined
[52]  
Verschelde H(2018)undefined JHEP 11 080-undefined
[53]  
Stanford D(2020)undefined JHEP 04 186-undefined
[54]  
Witten E(2002)undefined Nucl. Phys. B 636 497-undefined
[55]  
Stanford D(2013)undefined JHEP 05 014-undefined
[56]  
Witten E(2018)undefined Int. J. Mod. Phys. A 33 1830029-undefined
[57]  
Mertens TG(2022)undefined JHEP 05 092-undefined
[58]  
Lam HT(1993)undefined J. Math. Phys. 34 5964-undefined
[59]  
Mertens TG(1991)undefined Commun. Math. Phys. 141 503-undefined
[60]  
Turiaci GJ(1987)undefined Math. Annalen 277 1-undefined