Supergroup structure of Jackiw-Teitelboim supergravity

被引:0
作者
Yale Fan
Thomas G. Mertens
机构
[1] University of Texas at Austin,Theory Group, Department of Physics
[2] Ghent University,Department of Physics and Astronomy
来源
Journal of High Energy Physics | / 2022卷
关键词
2D Gravity; Models of Quantum Gravity; Supergravity Models; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We develop the gauge theory formulation of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Jackiw-Teitelboim supergravity in terms of the underlying OSp(1|2, ℝ) supergroup, focusing on boundary dynamics and the exact structure of gravitational amplitudes. We prove that the BF description reduces to a super-Schwarzian quantum mechanics on the holographic boundary, where boundary-anchored Wilson lines map to bilocal operators in the super-Schwarzian theory. A classification of defects in terms of monodromies of OSp(1|2, ℝ) is carried out and interpreted in terms of character insertions in the bulk. From a mathematical perspective, we construct the principal series representations of OSp(1|2, ℝ) and show that whereas the corresponding Plancherel measure does not match the density of states of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 JT supergravity, a restriction to the positive subsemigroup OSp+(1|2, ℝ) yields the correct density of states, mirroring the analogous results for bosonic JT gravity. We illustrate these results with several gravitational applications, in particular computing the late-time complexity growth in JT supergravity.
引用
收藏
相关论文
共 196 条
[1]  
Almheiri A(2015) 3 JHEP 11 014-undefined
[2]  
Polchinski J(2016) 2 JHEP 07 139-undefined
[3]  
Engelsöy J(2020)( JHEP 08 044-undefined
[4]  
Mertens TG(2021)(2 JHEP 02 168-undefined
[5]  
Verlinde H(2020))) JHEP 09 194-undefined
[6]  
Marolf D(2020) SL( SciPost Phys. 9 045-undefined
[7]  
Maxfield H(2019)) JHEP 09 060-undefined
[8]  
Blommaert A(2019) OSp(1|2) JHEP 07 097-undefined
[9]  
Mertens TG(2021) 2 JHEP 03 086-undefined
[10]  
Verschelde H(2019) 2 JHEP 08 049-undefined