A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex

被引:0
|
作者
Fangfang Zhu
Yang Peng
Hua Zhu
机构
[1] Sichuan University,School of Chemistry
来源
Theoretical Chemistry Accounts | 2022年 / 141卷
关键词
Ar–SO; Potential energy surface; Rovibrational energy levels; Rovibrational spectra;
D O I
暂无
中图分类号
学科分类号
摘要
We present a full-dimensional potential energy surface for Ar–SO2 which involves three intramolecular Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{1}$$\end{document}, Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{2}$$\end{document} and Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{3}$$\end{document} normal modes for the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} symmetric stretching, ν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{2}$$\end{document} bending and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} asymmetric stretching vibrations of SO2. The intermolecular potential was computed at the [CCSD(T)]-F12a level with aug-cc-pVTZ basis set plus the midpoint bond functions (3s3p2d1f1g). Three vibrationally averaged potentials of Ar–SO2 with SO2 in the ground state as well as the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} excited states were generated by integrating three intramolecular coordinates. Each potential has a global minimum with the non-planar geometry and two saddle points. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were utilized to calculate the rovibrational bound states and energy levels of Ar–SO2. The vibrational band origin shifts for this complex in the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} regions of SO2 were determined to be − 0.0970 and − 0.7537 cm−1, respectively. The calculated origin shifts as well as the microwave and infrared transition frequencies agree well with available experimental results.
引用
收藏
相关论文
共 50 条
  • [21] QCT dynamics study of the reaction of hydroxyl radical and methane using a new ab initio fitted full-dimensional analytical potential energy surface
    Joaquin Espinosa-Garcia
    Jose C. Corchado
    Theoretical Chemistry Accounts, 2015, 134
  • [22] POTENTIAL ENERGY SURFACE, MICROWAVE AND INFRARED SPECTRA OF THE Xe-CO2 COMPLEX FROM AB INITIO CALCULATIONS
    Chen, Min
    Zhu, Hua
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2012, 11 (03) : 537 - 546
  • [23] A new ab initio potential energy surface and infrared spectra for the He–CS2 complex
    Ting Yuan
    Hua Zhu
    Theoretical Chemistry Accounts, 2014, 133
  • [24] QCT dynamics study of the reaction of hydroxyl radical and methane using a new ab initio fitted full-dimensional analytical potential energy surface
    Espinosa-Garcia, Joaquin
    Corchado, Jose C.
    THEORETICAL CHEMISTRY ACCOUNTS, 2015, 134 (02)
  • [25] A new ab initio potential energy surface and infrared spectra for the Ne-CS2 complex
    Hu, Yun
    Yuan, Ting
    Zhu, Hua
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2015, 1056 : 47 - 51
  • [26] Ab initio potential energy surface and microwave spectra for Kr-NCCN complex
    Huang, Wuying
    Qian, Jing
    Lei, Lilei
    Lv, Bowen
    Tao, Haisheng
    Li, Kuanguo
    Feng, Eryin
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2020, 374
  • [27] A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the He–CS2 complex
    Jing Shang
    Ting Yuan
    Hua Zhu
    Theoretical Chemistry Accounts, 2016, 135
  • [28] A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the Ne-CS2 complex
    Qin, Miao
    Shang, Jing
    Hong, Qi
    Zhu, Hua
    MOLECULAR PHYSICS, 2017, 115 (03) : 379 - 385
  • [29] Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface
    Espinosa-Garcia, Joaquin
    Rangel, Cipriano
    Suleimanov, Yury V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (29) : 19341 - 19351
  • [30] A new ab initio potential energy surface and microwave and infrared spectra for the Ne-CO2 complex
    Chen, Rong
    Jiao, Erqiang
    Zhu, Hua
    Xie, Daiqian
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (10)