A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex
被引:0
|
作者:
Fangfang Zhu
论文数: 0引用数: 0
h-index: 0
机构:Sichuan University,School of Chemistry
Fangfang Zhu
Yang Peng
论文数: 0引用数: 0
h-index: 0
机构:Sichuan University,School of Chemistry
Yang Peng
Hua Zhu
论文数: 0引用数: 0
h-index: 0
机构:Sichuan University,School of Chemistry
Hua Zhu
机构:
[1] Sichuan University,School of Chemistry
来源:
Theoretical Chemistry Accounts
|
2022年
/
141卷
关键词:
Ar–SO;
Potential energy surface;
Rovibrational energy levels;
Rovibrational spectra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present a full-dimensional potential energy surface for Ar–SO2 which involves three intramolecular Q1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{1}$$\end{document}, Q2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{2}$$\end{document} and Q3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{3}$$\end{document} normal modes for the ν1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{1}$$\end{document} symmetric stretching, ν2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{2}$$\end{document} bending and ν3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{3}$$\end{document} asymmetric stretching vibrations of SO2. The intermolecular potential was computed at the [CCSD(T)]-F12a level with aug-cc-pVTZ basis set plus the midpoint bond functions (3s3p2d1f1g). Three vibrationally averaged potentials of Ar–SO2 with SO2 in the ground state as well as the ν1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{3}$$\end{document} excited states were generated by integrating three intramolecular coordinates. Each potential has a global minimum with the non-planar geometry and two saddle points. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were utilized to calculate the rovibrational bound states and energy levels of Ar–SO2. The vibrational band origin shifts for this complex in the ν1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu_{3}$$\end{document} regions of SO2 were determined to be − 0.0970 and − 0.7537 cm−1, respectively. The calculated origin shifts as well as the microwave and infrared transition frequencies agree well with available experimental results.
机构:
Sichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Sichuan Univ, State Key Lab Biotherapy, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Yuan, Ting
Zhu, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Sichuan Univ, State Key Lab Biotherapy, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
机构:Univ Paris Est Creteil, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France
Gutle, C.
Coudert, L. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Creteil, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, FranceUniv Paris Est Creteil, CNRS, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France
机构:
Sichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Sichuan Univ, State Key Lab Biotherapy, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Shang, Jing
Yuan, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Sichuan Univ, State Key Lab Biotherapy, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Yuan, Ting
Zhu, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Chem, Chengdu 610064, Peoples R China
Sichuan Univ, State Key Lab Biotherapy, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Chem, Chengdu 610064, Peoples R China