A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar–SO2 complex

被引:0
|
作者
Fangfang Zhu
Yang Peng
Hua Zhu
机构
[1] Sichuan University,School of Chemistry
来源
Theoretical Chemistry Accounts | 2022年 / 141卷
关键词
Ar–SO; Potential energy surface; Rovibrational energy levels; Rovibrational spectra;
D O I
暂无
中图分类号
学科分类号
摘要
We present a full-dimensional potential energy surface for Ar–SO2 which involves three intramolecular Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{1}$$\end{document}, Q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{2}$$\end{document} and Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{3}$$\end{document} normal modes for the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} symmetric stretching, ν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{2}$$\end{document} bending and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} asymmetric stretching vibrations of SO2. The intermolecular potential was computed at the [CCSD(T)]-F12a level with aug-cc-pVTZ basis set plus the midpoint bond functions (3s3p2d1f1g). Three vibrationally averaged potentials of Ar–SO2 with SO2 in the ground state as well as the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} excited states were generated by integrating three intramolecular coordinates. Each potential has a global minimum with the non-planar geometry and two saddle points. The radial discrete variable representation (DVR)/angular finite basis representation (FBR) method and Lanczos algorithm were utilized to calculate the rovibrational bound states and energy levels of Ar–SO2. The vibrational band origin shifts for this complex in the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} regions of SO2 were determined to be − 0.0970 and − 0.7537 cm−1, respectively. The calculated origin shifts as well as the microwave and infrared transition frequencies agree well with available experimental results.
引用
收藏
相关论文
共 50 条
  • [1] A full-dimensional ab initio potential energy surface and rovibrational spectra for the Ar-SO2 complex
    Zhu, Fangfang
    Peng, Yang
    Zhu, Hua
    THEORETICAL CHEMISTRY ACCOUNTS, 2022, 141 (10)
  • [2] A full-dimensional ab initio potential energy surface and rovibrational energies of the Ar-HF complex
    Huang, Jing
    Zhou, Yanzi
    Xie, Daiqian
    MOLECULAR PHYSICS, 2018, 116 (7-8) : 835 - 842
  • [3] A new four-dimensional ab initio potential energy surface and rovibrational spectra for the C2H2-Ar complex
    Han, Chaoying
    Pei, Xin
    Zhu, Hua
    Fan, Hongjun
    MOLECULAR PHYSICS, 2020, 118 (14)
  • [4] New potential energy surface and rovibrational spectra of Ar•••HCl complex: An ab initio study
    Jouypazadeh, Hamidreza
    Solimannejad, Mohammad
    Farrokhpour, Hossein
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2016, 1083 : 64 - 71
  • [5] AB INITIO POTENTIAL ENERGY SURFACE AND PREDICTED ROVIBRATIONAL SPECTRA FOR THE Kr-N2O COMPLEX
    Chen, Rong
    Zhu, Hua
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2008, 7 (05) : 1093 - 1102
  • [6] A new six-dimensional ab intito potential energy surface and rovibrational spectra for the Ar-H2S complex
    Jiang, Ting
    Han, Chaoying
    Zhu, Hua
    MOLECULAR PHYSICS, 2020, 118 (03)
  • [7] A new six-dimensional ab initio potential energy surface and rovibrational spectra for the Ne-H2S complex
    Pei, Xin
    Peng, Yang
    Zhu, Hua
    CHEMICAL PHYSICS LETTERS, 2021, 763
  • [8] A new ab initio potential energy surface and rovibrational spectra for the N 2-N 2 O complex
    Liu, Li
    Jiang, Xuedan
    Peng, Yang
    Zhu, Hua
    CHEMICAL PHYSICS, 2024, 582
  • [9] Full-Dimensional Ab Initio Potential Energy Surface and Vibrational Energy Levels of Li2H
    Furudate, Michiko Ahn
    Hagebaum-Reignier, Denis
    Jeung, Gwang-Hi
    MOLECULES, 2019, 24 (01)
  • [10] Ab initio potential energy surface and rovibrational spectra of He-N2O
    Zhu, H
    Li, J
    Xie, DQ
    Yan, GS
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2002, 23 (11): : 2137 - 2141