Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network

被引:1
|
作者
Zhiyong Lin
Yingpu Cui
Jia Liu
Zhaonan Sun
Shuai Ma
Xiaodong Zhang
Xiaoying Wang
机构
[1] Peking University First Hospital,Department of Radiology
来源
European Radiology | 2021年 / 31卷
关键词
Kidney; Renal neoplasm; Tomography, X-ray computed; Deep learning; Computer-assisted diagnosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5021 / 5031
页数:10
相关论文
共 50 条
  • [31] 3D U-Net-Based Brain Tumor Semantic Segmentation Using a Modified Data Generator
    Kumar, Dinesh
    Sethi, Dimple
    Kussa, Wagaye Tadele
    Dana, Yeabsira Mengistu
    Kag, Hitesh
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [32] 3D U-TFA: A deep convolutional neural network for automatic segmentation of glioblastoma
    Wu, Shang
    Chen, Zhencheng
    Sun, Peng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [33] TOOTH SEGMENTATION IN 3D CONE-BEAM CT IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Khan, S.
    Mukati, A.
    Rizvi, S. S. H.
    Yazdanie, N.
    NEURAL NETWORK WORLD, 2022, 32 (06) : 301 - 318
  • [34] A Novel Deep Learning-Based (3D U-Net Model) Automated Pulmonary Nodule Detection Tool for CT Imaging
    Mahajan, Abhishek
    Agarwal, Rajat
    Agarwal, Ujjwal
    Ashtekar, Renuka M.
    Komaravolu, Bharadwaj
    Madiraju, Apparao
    Vaish, Richa
    Pawar, Vivek
    Punia, Vivek
    Patil, Vijay Maruti
    Noronha, Vanita
    Joshi, Amit
    Menon, Nandini
    Prabhash, Kumar
    Chaturvedi, Pankaj
    Rane, Swapnil
    Banwar, Priya
    Gupta, Sudeep
    CURRENT ONCOLOGY, 2025, 32 (02)
  • [35] AUTOMATED MULTI-ORGAN SEGMENTATION IN PET IMAGES USING CASCADED TRAINING OF A 3D U-NET AND CONVOLUTIONAL AUTOENCODER
    Liebgott, Annika
    Lorenz, Charlotte
    Gatidis, Sergios
    Viet Chau Vu
    Nikolaou, Konstantin
    Yang, Bin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1145 - 1149
  • [36] An improved 3D U-Net-based deep learning system for brain tumor segmentation using multi-modal MRI
    Ali S.
    Khurram R.
    Rehman K.U.
    Yasin A.
    Shaukat Z.
    Sakhawat Z.
    Mujtaba G.
    Multimedia Tools and Applications, 2024, 83 (37) : 85027 - 85046
  • [37] Kidney and Renal Tumor Segmentation by nnU-Net Using 3D CT Data from Different Sources
    Gido, Masanobu
    Nakagawa, Shota
    Mori, Kensaku
    Kakeya, Hideki
    ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS, 2025, 13 (01): : 83 - 89
  • [38] Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
    Sven Koitka
    Lennard Kroll
    Eugen Malamutmann
    Arzu Oezcelik
    Felix Nensa
    European Radiology, 2021, 31 : 1795 - 1804
  • [39] Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
    Koitka, Sven
    Kroll, Lennard
    Malamutmann, Eugen
    Oezcelik, Arzu
    Nensa, Felix
    EUROPEAN RADIOLOGY, 2021, 31 (04) : 1795 - 1804
  • [40] Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network
    de Moor, Timothy
    Rodriguez-Ruiz, Alejandro
    Merida, Albert Gubern
    Mann, Ritse
    Teuwen, Jonas
    14TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI 2018), 2018, 10718