Boundedness of vector-valued Calderón-Zygmund operators on non-homogeneous metric measure spaces

被引:0
|
作者
Yaoyao Han
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
来源
Journal of Pseudo-Differential Operators and Applications | 2022年 / 13卷
关键词
Non-homogeneous metric measure space; Vector-valued Calderón-Zygmund operator; Maximal operator; Boundedness; 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {X},d,\mu )$$\end{document} be a non-homogeneous metric measure space and satisfies non-atomic condition that μ({x})=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\{x\}) = 0$$\end{document} for all x∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \mathcal {X}$$\end{document}. B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}_1$$\end{document} and B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}_2$$\end{document} are Banach spaces. In this paper, we show that the boundedness of the vector-valued Calderón-Zygmund operator T→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{T}$$\end{document} from L2(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathcal {X}, \mathcal {B}_1)$$\end{document} to L2(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathcal {X}, \mathcal {B}_2)$$\end{document} is equivalent to T→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{T}$$\end{document} from Lp(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathcal {X}, \mathcal {B}_1)$$\end{document} to Lp(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathcal {X}, \mathcal {B}_2)$$\end{document} for p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, and from L1(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\mathcal {X}, \mathcal {B}_1)$$\end{document} to L1,∞(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1,\infty }(\mathcal {X}, \mathcal {B}_2)$$\end{document}. As an application, we prove that if T→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{T}$$\end{document} is bounded from L2(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathcal {X}, \mathcal {B}_1)$$\end{document} to L2(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathcal {X}, \mathcal {B}_2)$$\end{document}, then its maximal operator is bounded from Lp(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathcal {X}, \mathcal {B}_1)$$\end{document} to Lp(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathcal {X}, \mathcal {B}_2)$$\end{document} for p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document} and from L1(X,B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(\mathcal {X}, \mathcal {B}_1)$$\end{document} to L1,∞(X,B2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1,\infty }(\mathcal {X}, \mathcal {B}_2)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Hardy spaces Hp over non-homogeneous metric measure spaces and their applications
    Xing Fu
    HaiBo Lin
    DaChun Yang
    DongYong Yang
    Science China Mathematics, 2015, 58 : 309 - 388
  • [32] Commutators of log-Dini-type parametric Marcinkiewicz operators on non-homogeneous metric measure spaces
    Tao Xiangxing
    Zhang Qiange
    Journal of Inequalities and Applications, 2021
  • [33] Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
    Wang, Shengrong
    Xu, Jingshi
    OPEN MATHEMATICS, 2021, 19 (01): : 412 - 426
  • [34] Weighted Variable Hardy Spaces Associated with Para-Accretive Functions and Boundedness of Calderón–Zygmund Operators
    Jian Tan
    The Journal of Geometric Analysis, 2023, 33
  • [35] Commutators of Littlewood-Paley g*κ-functions on non-homogeneous metric measure spaces
    Lu, Guanghui
    Tao, Shuangping
    OPEN MATHEMATICS, 2017, 15 : 1283 - 1299
  • [36] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    Science China(Mathematics), 2015, 58 (02) : 309 - 388
  • [37] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    G. Lu
    S. Tao
    Analysis Mathematica, 2019, 45 : 87 - 110
  • [38] GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Fu, Xing
    Yang, Dachun
    Yuan, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 509 - 557
  • [39] Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
    Lu, Guanghui
    Tao, Shuangping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [40] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    Lu, G.
    Tao, S.
    ANALYSIS MATHEMATICA, 2019, 45 (01) : 87 - 110