The category of smooth, irreducible, projective, complex algebraic curves is equivalent to the category of compact Riemann surfaces. We study automorphism groups of Riemann surfaces which are equivalent to complex algebraic curves with real moduli. A complex algebraic curve C has real moduli when the corresponding surface XC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_C$$\end{document} admits an anti-conformal automorphism. If no such an automorphism is an involution (symmetry), then the surface XC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_C$$\end{document} is called pseudo-real and the curve C is isomorphic to its conjugate, but is not definable over reals. Otherwise, the surface XC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_C$$\end{document} is called symmetric and the curve C is real.