Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces

被引:0
|
作者
Ewa Tyszkowska
机构
[1] Gdańsk University,Institute of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Riemann surface; Symmetry of a Riemann surface; Asymmetric Riemann surface; Pseudo-symmetric Riemann surface; Fuchsian groups; NEC groups; Primary 30F99; Secondary 14H37; 20F;
D O I
暂无
中图分类号
学科分类号
摘要
The category of smooth, irreducible, projective, complex algebraic curves is equivalent to the category of compact Riemann surfaces. We study automorphism groups of Riemann surfaces which are equivalent to complex algebraic curves with real moduli. A complex algebraic curve C has real moduli when the corresponding surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} admits an anti-conformal automorphism. If no such an automorphism is an involution (symmetry), then the surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} is called pseudo-real and the curve C is isomorphic to its conjugate, but is not definable over reals. Otherwise, the surface XC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_C$$\end{document} is called symmetric and the curve C is real.
引用
收藏
相关论文
共 42 条
  • [11] On symmetric representations of groups of automorphism of bordered Klein surfaces
    Czesław Bagiński
    Grzegorz Gromadzki
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 359 - 369
  • [12] On discrete versions of two Accola’s theorems about automorphism groups of Riemann surfaces
    Maxim Limonov
    Roman Nedela
    Alexander Mednykh
    Analysis and Mathematical Physics, 2017, 7 : 233 - 243
  • [13] On discrete versions of two Accola's theorems about automorphism groups of Riemann surfaces
    Limonov, Maxim
    Nedela, Roman
    Mednykh, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (03) : 233 - 243
  • [14] On Real Forms of Belyi Surfaces With Symmetric Groups of Automorphisms
    Javier Etayo, Jose
    Gromadzki, Grzegorz
    Martinez, Ernesto
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 669 - 675
  • [15] On Real Forms of Belyi Surfaces With Symmetric Groups of Automorphisms
    José Javier Etayo
    Grzegorz Gromadzki
    Ernesto Martínez
    Mediterranean Journal of Mathematics, 2012, 9 : 669 - 675
  • [16] On dimensions of the real nerve of the moduli space of Riemann surfaces of odd genus
    Gromadzki, Grzegorz
    Kozlowska-Walania, Ewa
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 135 : 91 - 109
  • [17] Symmetric and alternating groups as monodromy groups of riemann surfaces 1: Generic covers and covers with many branch points
    Guralnick, Robert M.
    Shareshian, John
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 189 (886) : 1 - +
  • [18] Riemann surfaces with maximal real symmetry
    Bujalance, E.
    Cirre, F. J.
    Conder, M. D. E.
    JOURNAL OF ALGEBRA, 2015, 443 : 494 - 516
  • [19] Nilpotent groups of automorphisms of families of Riemann surfaces
    Sebastián Reyes-Carocca
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 359 - 377
  • [20] On p-hyperellipticity of doubly symmetric Riemann surfaces
    Kozlowska-Walania, Ewa
    PUBLICACIONS MATEMATIQUES, 2007, 51 (02) : 291 - 307