Algorithmically Solving the Tadpole Problem

被引:0
作者
Iosif Bena
Johan Blåbäck
Mariana Graña
Severin Lüst
机构
[1] Université Paris Saclay,Institut de Physique Théorique
[2] CEA,Dipartimento di Fisica
[3] CNRS,Jefferson Physical Laboratory
[4] Università di Roma “Tor Vergata”,undefined
[5] INFN-Sezione di Roma 2,undefined
[6] Harvard University,undefined
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Differential evolution; Flux compactification; Genetic algorithm; K3 surface; Lattice reduction; Moduli stabilization; String theory; String theory landscape; Tadpole cancellation;
D O I
暂无
中图分类号
学科分类号
摘要
The extensive computer-aided search applied in Bena et al. (The tadpole problem, 2020) to find the minimal charge sourced by the fluxes that stabilize all the (flux-stabilizable) moduli of a smooth K3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} K3 compactification uses differential evolutionary algorithms supplemented by local searches. We present these algorithms in detail and show that they can also solve our minimization problem for other lattices. Our results support the Tadpole Conjecture: The minimal charge grows linearly with the dimension of the lattice and, for K3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} K3, this charge is larger than allowed by tadpole cancellation. Even if we are faced with an NP-hard lattice-reduction problem at every step in the minimization process, we find that differential evolution is a good technique for identifying the regions of the landscape where the fluxes with the lowest tadpole can be found. We then design a “Spider Algorithm,” which is very efficient at exploring these regions and producing large numbers of minimal-tadpole configurations.
引用
收藏
相关论文
共 134 条
[1]  
AbdusSalam S(2020)A systematic approach to Kähler moduli stabilisation JHEP 08 047-98
[2]  
Cicoli M(2014)Genetic algorithms and the search for viable string vacua JHEP 08 010-287
[3]  
Quevedo F(2020)Deep learning and AdS/QCD Phys. Rev. D 102 026020-72
[4]  
Shukla P(2019)Estimating Calabi–Yau hypersurface and triangulation counts with equation learners JHEP 03 186-706
[5]  
Abel S(2005)Fixing all moduli for M-theory on K3  JHEP 10 001-653
[6]  
Abel S(2020) K3 JHEP 12 193-1142
[7]  
Rizos J(2020)Hyperkähler isometries of K3 surfaces Phys. Rev. D 102 086013-210
[8]  
Akutagawa T(2019)Quiver mutations, Seiberg duality and machine learning Fortsch. Phys. 67 1900065-443
[9]  
Hashimoto K(2017)Type IIB flux vacua and tadpole cancellation SIAM Rev. 59 65-534
[10]  
Sumimoto T(2013)Julia: a fresh approach to numerical computing JHEP 08 054-129