Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

被引:0
|
作者
Elise M. Miner
Tomohiro Fukushima
Dennis Sheberla
Lei Sun
Yogesh Surendranath
Mircea Dincă
机构
[1] Massachusetts Institute of Technology,Department of Chemistry
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.
引用
收藏
相关论文
共 50 条
  • [21] A new Ni/Ni3(BO3)2/NiO heterostructured photocatalyst with efficient reduction of CO2 into CH4
    Yu, Yanlong
    Guo, Limei
    Cao, Han
    Lv, Yuekai
    Wang, Enjun
    Cao, Yaan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 142 : 14 - 17
  • [22] INVESTIGATION OF HALL-EFFECT IN TERNARY ORDERING NI3(MN, FE) AND NI3(MN, CO) ALLOYS .2.
    ZHUKOVA, VM
    FADIN, VP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1970, (05): : 99 - &
  • [23] The corrosion behavior of intermetallic compounds Ni3(Si,Ti) and Ni3(Si,Ti)+2Mo in acidic solutions
    Priyotomo, Gadang
    Okitsu, Kenji
    Iwase, Akihiro
    Kaneno, Yasuyuki
    Nishimura, Rokuro
    Takasugi, Takayuki
    APPLIED SURFACE SCIENCE, 2011, 257 (19) : 8268 - 8274
  • [24] Coupling of a conductive Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 metal-organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries
    Nazir, Aqsa
    Le, Hang T. T.
    Min, Chan-Woo
    Kasbe, Arvind
    Kim, Jaekook
    Jin, Chang-Soo
    Park, Chan-Jin
    NANOSCALE, 2020, 12 (03) : 1629 - 1642
  • [25] Effect of a nanosized state on the magnetic properties of Ni3(Al,Fe) and Ni3(Al,Co)
    N. V. Kazantseva
    V. P. Pilyugin
    V. A. Zavalishin
    N. N. Stepanova
    The Physics of Metals and Metallography, 2014, 115 : 243 - 247
  • [26] Effect of a Nanosized State on the Magnetic Properties of Ni3(Al,Fe) and Ni3(Al,Co)
    Kazantseva, N. V.
    Pilyugin, V. P.
    Zavalishin, V. A.
    Stepanova, N. N.
    PHYSICS OF METALS AND METALLOGRAPHY, 2014, 115 (03): : 243 - 247
  • [27] Ni3[Fe(CN)6]2 nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution
    Zhang, Xiao
    Liu, Pei
    Sun, Yanfang
    Zhan, Tianrong
    Liu, Qingyun
    Tang, Lin
    Guo, Jinxue
    Xia, Yongyao
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (07): : 1683 - 1689
  • [28] DUCTILIZATION OF NI3 BY MICROALLOYING WITH AG
    CHIBA, A
    HANADA, S
    WATANABE, S
    SCRIPTA METALLURGICA ET MATERIALIA, 1992, 26 (07): : 1031 - 1036
  • [29] Generation of a Ni3 Phosphinidene Cluster from the Ni(0) Synthon, Ni(η3-CPh3)2
    Touchton, Alexander J.
    Wu, Guang
    Hayton, Trevor W.
    ORGANOMETALLICS, 2020, 39 (08) : 1360 - 1365
  • [30] Unraveling the Semiconducting/Metallic Discrepancy in Ni3(HITP)2
    Foster, Michael E.
    Sohlberg, Karl
    Allendorf, Mark D.
    Talin, A. Alec
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03): : 481 - 486