Large-Time Behavior for a Fully Nonlocal Heat Equation

被引:0
|
作者
Carmen Cortázar
Fernando Quirós
Noemí Wolanski
机构
[1] Pontificia Universidad Católica de Chile,Departamento de Matemática
[2] Universidad Autónoma de Madrid,Departamento de Matemáticas
[3] Instituto de Ciencias Matemáticas ICMAT (CSIC-UAM-UCM-UC3M),IMAS
[4] Ciudad Universitaria,UBA
来源
Vietnam Journal of Mathematics | 2021年 / 49卷
关键词
Fully nonlocal heat equation; Caputo derivative; Fractional Laplacian; Asymptotic behavior; 35B40; 35R11; 35R09; 45K05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the large-time behavior in all Lp norms and in different space-time scales of solutions to a nonlocal heat equation in ℝN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{N}$\end{document} involving a Caputo α-time derivative and a power of the Laplacian (−Δ)s, s ∈ (0,1), extending recent results by the authors for the case s = 1. The initial data are assumed to be integrable, and, when required, to be also in Lp. The main novelty with respect to the case s = 1 comes from the behaviour in fast scales, for which, thanks to the fat tails of the fundamental solution of the equation, we are able to give results that are not available neither for the case s = 1 nor, to our knowledge, for the standard heat equation, s = 1, α = 1.
引用
收藏
页码:831 / 844
页数:13
相关论文
共 50 条
  • [31] Large Time Asymptotic Properties of the Stochastic Heat Equation
    Kohatsu-Higa, Arturo
    Nualart, David
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1455 - 1473
  • [32] Large Time Asymptotic Properties of the Stochastic Heat Equation
    Arturo Kohatsu-Higa
    David Nualart
    Journal of Theoretical Probability, 2021, 34 : 1455 - 1473
  • [33] LARGE TIME BEHAVIOUR FOR A NONLOCAL DIFFUSION - CONVECTION EQUATION RELATED WITH GAS DYNAMICS
    Ignat, Liviu I.
    Pazoto, Ademir F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3575 - 3589
  • [34] Global existence and long-time behavior of solutions for fully nonlocal Boussinesq equations
    Zhang, Xiaoju
    Zheng, Kai
    Lu, Yao
    Ma, Huanhuan
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09): : 5406 - 5424
  • [35] HOLDER ESTIMATES AND LARGE TIME BEHAVIOR FOR A NONLOCAL DOUBLY NONLINEAR EVOLUTION
    Hynd, Ryan
    Lindgren, Erik
    ANALYSIS & PDE, 2016, 9 (06): : 1447 - 1482
  • [36] LONG-TIME BEHAVIOR OF A NONLOCAL CAHN-HILLIARD EQUATION WITH REACTION
    Iuorio, Annalisa
    Melchionna, Stefano
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3765 - 3788
  • [37] LARGE-TIME BEHAVIOR OF THE FULL COMPRESSIBLE EULER-POISSON SYSTEM WITHOUT THE TEMPERATURE DAMPING
    Tan, Zhong
    Wang, Yong
    Xu, Fanhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) : 1583 - 1601
  • [38] Global solution and large-time behavior of the 3D compressible Euler equations with damping
    Tan, Zhong
    Wang, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) : 1686 - 1704
  • [39] Long time behavior of solutions for a scalar nonlocal reaction-diffusion equation
    Wang, Xiaoliu
    Wo, Weifeng
    ARCHIV DER MATHEMATIK, 2011, 96 (05) : 483 - 490
  • [40] Long time behavior of solutions for a scalar nonlocal reaction-diffusion equation
    Xiaoliu Wang
    Weifeng Wo
    Archiv der Mathematik, 2011, 96 : 483 - 490