The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters

被引:0
作者
Fei Wu
Kazhong Deng
Guobin Chang
Qianxin Wang
机构
[1] School of Environment Science and Spatial Informatics,
[2] China University of Mining and Technology,undefined
来源
Acta Geodaetica et Geophysica | 2018年 / 53卷
关键词
Earth orientation products; Weighted least-squares; Autoregressive model; Polar motion prediction;
D O I
暂无
中图分类号
学科分类号
摘要
This study employs a combination of weighted least-squares extrapolation and an autoregressive model to produce medium-term predictions of polar motion (PM) parameters. The precisions of PM parameters extracted from earth orientation parameter (EOP) products are applied to determine the weight matrix. This study employs the EOP products released by the analysis center of the ‘International Global Navigation Satellite System Service and International Earth Rotation and Reference Systems Service’ needs to be modified to ‘International Global Navigation Satellite System Service (IGS) and International Earth Rotation and Reference Systems Service (IERS)’ as primary data. The polar motion parameters and their precisions are extracted from the EOP products to predict the changes in polar motion over spans of 1–360 days. Compared with the combination of least-squares and autoregressive model, this method shows considerable improvement in the prediction of PM parameters.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 42 条
  • [1] Dow JM(2005)The IGGOS viewed from the space geodetic services J Geodyn 40 375-386
  • [2] Gurtner W(1994)The short-term prediction of universal time and length of day using atmospheric angular momentum J Geophys Res Solid Earth 99 6981-6996
  • [3] Schlüter W(2013)A technique to improve the accuracy of earth orientation prediction algorithms based on least squares extrapolation J Geodyn 70 36-48
  • [4] Freedman AP(2007)Current results of the earth orientation parameters prediction comparison campaign Proc Journées 84 587-596
  • [5] Steppe JA(2010)Achievements of the earth orientation parameters prediction comparison campaign J Geodesy 84 587-596
  • [6] Dickey JO(2008)Forecasting of the earth orientation parameters comparison of different algorithms Nagoya J Med Sci 69 133-137
  • [7] Eubanks TM(2002)Prediction of earth orientation parameters by artificial neural networks J Geodesy 76 247-258
  • [8] Sung LY(2012)Prediction of earth rotation parameters based on improved weighted least squares and autoregressive model Geodesy Geodyn 3 57-64
  • [9] Guo JY(2006)Physical backgrounds of Earth’s rotation, revision of the terminology Acta Geod Geophys Hung 41 31-44
  • [10] Li YB(2015)EOP prediction using least square fitting and autoregressive filter over optimized data intervals Adv Space Res 56 2248-2253