Partial-Neurons-Based H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} State Estimation for Time-Varying Neural Networks Subject to Randomly Occurring Time Delays under Variance Constraint

被引:0
|
作者
Jun Hu
Yan Gao
Cai Chen
Junhua Du
Chaoqing Jia
机构
[1] Harbin University of Science and Technology,School of Automation
[2] Harbin University of Science and Technology,Department of Mathematics
[3] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems
[4] Qiqihar University,College of Science
关键词
Time-varying recurrent neural networks; Partial-neurons-based state estimation; Variance constraint; performance; Randomly occurring time delays;
D O I
10.1007/s11063-023-11312-2
中图分类号
学科分类号
摘要
This paper discusses the issue of partial-neurons-based H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} state estimation for time-varying recurrent neural networks subject to randomly occurring time delays under variance constraint index. The measurement outputs are allowed to be available only at certain neurons. In addition, a random variable is introduced to model the randomly occurring time delays with certain occurrence probability. The aim is to propose the non-augmented partial-neurons-based state estimation strategy. Accordingly, some sufficient conditions are given to ensure two indices including the pre-determined H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance index and the error variance boundedness via the stochastic analysis approach. Finally, a simulation example is used to demonstrate the feasibility of presented partial-neurons-based H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} state estimation algorithm.
引用
收藏
页码:8285 / 8307
页数:22
相关论文
共 50 条