Flag-transitive symmetric 2-designs of prime order

被引:0
作者
Ziwei Lu
Shenglin Zhou
机构
[1] South China University of Technology,School of Mathematics
来源
Designs, Codes and Cryptography | 2024年 / 92卷
关键词
Flag-transitive; Order; Symmetric design; 05B05; 05B25; 20B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a flag-transitive automorphism group G of symmetric 2-(v,k,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document} designs, where λ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >1$$\end{document} and the order n=k-λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=k-\lambda $$\end{document} is a prime number. We prove that G is point-primitive, and it is of affine or almost simple type.
引用
收藏
页码:259 / 266
页数:7
相关论文
共 19 条
[1]  
Davies H(1987)Flag-transitivity and primitivity Discret. Math. 63 91-93
[2]  
Devillers A(2023)Analysing flag-transitive point-imprimitive 2-designs Algebr. Comb. 6 1041-1055
[3]  
Praeger CE(1987)Primitive permutation groups of odd degree, and an application to finite projective planes J. Algebra 106 15-45
[4]  
Kantor WM(2016)Flag-transitive point-primitive automorphism groups of nonsymmetric J. Comb. Des. 24 421-435
[5]  
Liang HX(1988)- J. Aust. Math. Soc. Ser. A 44 389-396
[6]  
Zhou SL(2022) designs J. Comb. Theory Ser. A 189 105620-148
[7]  
Liebeck MW(2005)On the O’Nan-Scott theorem for finite primitive permutation groups J. Comb. Theory Ser. A 109 135-141
[8]  
Praeger CE(2021)Flag-transitive and point-imprimitive symmetric designs with Discret. Math. 344 112225-undefined
[9]  
Saxl J(2013)On primitivity and reduction for flag-transitive symmetric designs J. Comb. Des. 21 127-undefined
[10]  
Mandić J(2020)Flag-transitive Discret. Math. 343 111843-undefined