Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites

被引:0
作者
Madeleine Laitz
Alexander E. K. Kaplan
Jude Deschamps
Ulugbek Barotov
Andrew H. Proppe
Inés García-Benito
Anna Osherov
Giulia Grancini
Dane W. deQuilettes
Keith A. Nelson
Moungi G. Bawendi
Vladimir Bulović
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
[2] Massachusetts Institute of Technology,Department of Chemistry
[3] Universidad Complutense de Madrid,Department of Organic Chemistry
[4] University of Pavia,Department of Chemistry & INSTM
[5] Massachusetts Institute of Technology,Research Laboratory of Electronics
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of ℏΩRabi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\hslash }}\Omega }_{{Rabi}}$$\end{document} = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.
引用
收藏
相关论文
共 143 条
  • [1] Deng H(2010)Exciton-polariton Bose-Einstein condensation Rev. Mod. Phys. 82 1489-1537
  • [2] Haug H(2013)All-optical polariton transistor Nat. Commun. 4 1-9
  • [3] Yamamoto Y(2021)All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires Sci. Adv. 7 378-383
  • [4] Ballarini D(2019)A room-temperature organic polariton transistor Nat. Photonics 13 291-295
  • [5] Feng J(2009)Collective fluid dynamics of a polariton condensate in a semiconductor microcavity Nature 457 527-533
  • [6] Zasedatelev AV(2010)Persistent currents and quantized vortices in a polariton superfluid Nat. Phys. 6 371-375
  • [7] Amo A(2010)Room-temperature polariton lasing in an organic single-crystal microcavity Nat. Photon. 4 490-504
  • [8] Sanvitto D(2021)Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2 Nat. Commun. 12 1800001-2301
  • [9] Kéna-Cohen S(2020)Quantum computing with exciton-polariton condensates npj Quantum Inf. 6 041022-1324
  • [10] Forrest SR(2020)Exploiting chemistry and molecular systems for quantum information science Nat. Rev. Chem. 4 2292-10085